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A B S T R A C T

In the paper the identification of the time-dependent blood perfusion coefficient is formulated as an inverse
problem. The bio-heat conduction problem is transformed into the classical heat conduction problem. Then
the transformed inverse problem is solved using the method of fundamental solutions together with the
Tikhonov regularization. Some numerical results are presented in order to demonstrate the accuracy and
the stability of the proposed meshless numerical algorithm.

© 2015 Published by Elsevier Ltd.

1. Introduction

The mathematical description of the relation between the tissue
temperature and the arterial blood perfusion has received a quite
extensive attention over the years in the literature. Several differ-
ent models for heat transfer in living tissues have been proposed,
e.g. Pennes’ bioheat transfer model [1], which is the most commonly

Q3 used, Wulff continuum model [2], Klinger continuum model [3], con-
tinuum model of Holmes and Chen [4] and Weinbaum–Jiji bioheat
model [5].

A number of standard numerical methods have been used in order
to solve the heat transfer in living tissues, e.g. the finite element
method [6], the finite difference method [7], the boundary element
method (BEM) [8], the dual reciprocity BEM [9], the Trefftz finite ele-
ment method [10] or the Monte Carlo method [11]. Recently, some
papers investigated the application of meshless methods for solving
the bio-heat equation, e.g. Yousefi in Ref.[12] used the Bernstein–
Galerkin method for finding the time-dependent blood perfusion
coefficient from internal tissue temperature measurements, Cao et al.
in Ref.[13] used the method of fundamental solutions (MFS) in com-
bination with radial basis functions for analysing thermal behavior of
skin tissues, whilst the radial basis collocation method was used by
Jamil and Ng in Ref.[14] to predict the temperature inside biological
tissues.

In the present paper, the identification of the time-dependent
blood perfusion coefficient in bioheat conduction is formulated as an

✩ Communicated by J. Rose and A. Briggs.

* Corresponding author.
E-mail address: D.Lesnic@leeds.ac.uk (D. Lesnic).

inverse problem, which is then solved numerically using the MFS. In
order to ensure stability of the solution for noisy data the Tikhonov
regularization is employed.

2. Mathematical formulation

The bioheat equation proposed by Pennes [1] can be written as:

ktDT − wbCb (T − Ta) + S = qtct
∂T
∂t∗ , (1)

where kt is the thermal conductivity of the tissue, T is the temper-
ature of the tissue, wb is the blood perfusion rate, Cb is the heat
capacity of blood, Ta is the temperature of the arterial blood, S is a
volumetric source related to heat generation due to metabolism and
heat deposition, qt and ct are, respectively, the density and specific
heat of the tissue, and t∗ is the time.

In one-dimension, Eq. (1) takes the following dimensionless form:

∂u
∂t

(x, t) =
∂2u
∂x2 (x, t) − q (t) u (x, t) + fS, (x, t) ∈ (0, 1) × (0, T] , (2)

where

x =
x∗

L
, t =

t∗kt

L2qtct
, u =

kt (T − Ta)

S0L2
, fS =

S
S0

, q =
wbcbL2

kt
.

(3)

http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.028
0735-1933/© 2015 Published by Elsevier Ltd.
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Neglecting, for simplicity, the dimensionless heat source fS we
consider the inverse problem of finding the temperature u(x, t) and
the time-dependent blood perfusion coefficient q(t) satisfying the
bio-heat conduction equation:

∂u
∂t

(x, t) =
∂2u
∂x2 (x, t) − q (t) u (x, t) , (x, t) ∈ (0, 1) × (0, T] (4)

subject to the initial condition

u (x, 0) = u0 (x) , x ∈ [0, 1] , (5)

the Robin boundary condition at x = 1, namely

au (1, t) + b
∂u
∂x

(1, t) = g (t) , t ∈ (0, T] , (6)

the Dirichlet boundary condition at x = 0, namely

u (0, t) = f (t) , t ∈ (0, T] , (7)

and the Neumann boundary condition at x = 0, namely

−∂u
∂x

(0, t) = h (t) , t ∈ (0, T] . (8)

In Eq. (6), we typically choose a = 1, b = 0, i.e. the Dirichlet
boundary condition

u (1, t) = g0 (t) , t ∈ (0, T] , (9)

or a = 0, b = 1, i.e. the Neumann boundary condition

∂u
∂x

(1, t) = g1 (t) , t ∈ (0, T] . (10)

We also assume the continuity compatibility conditions

u0 (0) = f (0) , −u′
0 (0) = h (0) , u0 (1) = g0 (0) , u′

0 (1) = g1 (1) .

(11)

Instead of the heat flux Condition (8), we can have the temper-
ature measurement at an interior point X0 ∈ (0, 1) giving the data

u (X0, t) = 0 (t) , t ∈ (0, T] (12)

satisfying the continuity condition

0 (0) = u0 (X0) . (13)

Another alternative to Eq. (8) is to prescribe the total mass
measurement

∫ 1

0
u (x, t) dx = E (t) , t ∈ (0, T] (14)

satisfying the continuity condition

E (0) =
∫ 1

0
u0 (x) dx. (15)

Under certain additional conditions, the uniqueness of the inverse
Problems (4), (5), (7), (9) and (12) or (14)has been proved by Prilepko
and Solov’ev [15] and Lin [16], respectively. Morever, both these
inverse problems, also in multi-dimensions, have been investigated

by Cannon et al. [17]. Reduction of the inverse Problems (4), (5), (7),
(8) and (10) to a well-posed Volterra integral equation of the second
kind has been proved in Refs.[18, 19] and with multi-dimensional
extensions given in Ref. [20].

In this study, we start with the theoretical analysis for solving the
alternative inverse Problems (4), (5), (7)–(9).

We first observe that employing the transformations

r (t) = exp
(∫ t

0
q (t) dt

)
, v (x, t) = r (t) u (x, t) (16)

recasts the Problems (4), (5), (7)–(9) into the form

∂v
∂t

(x, t) =
∂2v
∂x2 (x, t) , (x, t) ∈ (0, 1) × (0, T] , (17)

v (x, 0) = u0 (x) , x ∈ [0, 1] , (18)

v (0, t) = r (t) f (t) , v (1, t) = r (t) g0 (t) , t ∈ (0, T] , (19)

−∂v
∂x

(0, t) = r (t) h (t) , t ∈ (0, T] . (20)

Imposing also the first three continuity conditions in Eq. (11)
leads to

r (0) = 1. (21)

Thus using Eq. (16), the bio-heat Eq. (4) transforms into the heat
Eq. (17). Applying the Green formula to the Problems (17)(20), a
system is obtained consisting of two integral equations

1
2

r (t) f (t) =
∫ t

0
r (t)

[
G (0, t; 0, t) h (t) +

∂G
∂n

(0, t; 0, t) f (t)

−∂G
∂n

(0, t; 1, t) g0 (t)

]
dt +

∫ t

0
r (t) g1 (t) G (0, t; 1, t) dt

+
∫ 1

0
G (0, t; y, 0) u0 (y) dy, t ∈ (0, T] , (22)

1
2

r (t) g0 (t) =
∫ t

0
r (t)

[
G (1, t; 0, t) h (t) +

∂G
∂n

(1, t; 0, t) f (t)

−∂G
∂n

(1, t; 1, t) g0 (t)

]
dt +

∫ t

0
r (t) g1 (t) G (1, t; 1, t) dt

+
∫ 1

0
G (1, t; y, 0) u0 (y) dy, t ∈ (0, T] , (23)

where G is the fundamental solution of the one-dimensional time-
dependent heat equation

G (x, t; n, t) =
H (t − t)√
4p (t − t)

exp

(
− (x − n)

2

4 (t − t)

)
, (24)

with H as the Heaviside function.
Using Eq. (24), Eqs. (22) and (23) can be rewritten as a linear

system of Volterra integral equations of the second kind, namely,

√
pr(t) f (t)=

∫ t

0

r (t)√
t−t

[
h (t)+g1 (t)+

g0 (t)

2 (t − t)
exp

(
− 1

4 (t−t)

)]
dt

+
1√

t

∫ 1

0
u0 (y) exp

(
− y2

4t

)
dy, t ∈ (0, T] , (25)
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