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A B S T R A C T

During the casting process of silicon the mould must be buffered from the high temperatures of the molten
silicon to prevent the mould melting and this is typically done by the operators laying down a layer of
crushed silicon particles (fines) prior to pouring of the molten silicon. It is useful for operators to know how
deep they should make the layer the fines so as to adequately separate the molten silicon from the mould. In
this paper, we consider a model for the penetration of molten silicon into the pre-laid layer of silicon fines,
which provides a predictive tool for estimating the necessary depth of fines in order to prevent the molten
silicon touching the mould. The mathematical model developed here considers the flow of molten silicon
as a Darcy flow and solidification due to heat flow as a one-phase Stefan problem. We are able to find a
numerical solutions to this model, and from this we are able to extract data regarding the penetration depth
of the molten silicon into the fines before solidification occurs. Our model and numerical solution can been
seen as a first step toward understanding this important part of the casting process for silicon.

© 2016 Published by Elsevier Ltd.

1. Introduction

It is known from the literature on solidification of pure silicon and
silicon alloys that the cooling rate and mould structure will influ-
ence the microstructure of the obtained solid; see [1,2]. To prevent
the mould melting during the casting of silicon, operators typically
lay down a layer of crushed silicon fines prior to pouring of the
molten silicon so as to buffer the mould from the high temperatures
of the molten silicon. It is useful for operators to know how deep
they should lay the fines so as to adequately separate the molten
silicon from the mould. Therefore, in the present paper we con-
struct a mathematical model to predict the depth of penetration of
molten silicon into the fines layer which is laid down on the mould
surface before pouring of the hot liquid melt. This could provide a
useful tool for operators to know how deep they should lay their
fines so as to separate the molten silicon from the mould, particu-
larly since it is known that interactions with the fines can modify
the microstructure obtained from that which might be expected
from simply considering the rate of cooling [3]. There is also inter-
est in expanding the understanding of silicon fines behaviour such as
applications in the solar energy sector [4,5].

The basic approach taken here is to assume that the fines act
as a solid porous material and that the molten silicon then travels

� Communicated by J.W. Rose and A. Briggs.
E-mail address: Robert.VanGorder@maths.ox.ac.uk (G. Benham).

through the pore structure until it cools and solidifies. The aim is
to determine the movement of the molten silicon and in particular
the distance that the molten silicon travels into the porous struc-
ture. In practical situations the molten silicon is only just above its
melting temperature so melting of the porous structure can be
neglected but the initially cold porous structure causes the molten
silicon to solidify as it flows and thereby slow the flow down.
Furthermore it is anticipated that the flow into the pores can be
assumed to have a sharp interface between those pores that are filled
with silicon and those that have yet to be filled. This will enable a
saturated model of the flow to be used. Similar problems have
been studied in relation to the percolation of water through snow
[6-9]. The main difference is that in those situations the fluid
flow typically includes non-saturated effects and, more importantly,
the snow is only just below freezing and is insufficiently cold to
completely freeze the water and close the pores. In contrast, here
the fines are initially cold enough to allow the latent heat from
the molten silicon to be completely removed and hence solidify the
entire system.

The remainder of the paper is as follows. In Section 2, we shall
outline the formulation and geometry of the fines problem. Then, in
Section 3, we cast the relevant physical problem in terms of a Ste-
fan problem. In Section 4, we give a type of similarity solution for
the Stefan problem. From this solution, we are able to extract the
salient features of the problem, in order to determine the penetration
depth of molten silicon into the fines before solidification occurs. We
discuss the results in Section 5, and mention possible directions for

http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.03.029
0735-1933/© 2016 Published by Elsevier Ltd.
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future work including the extension to more complicated scenarios
that may arise in practical applications.

2. Formulation

To allow analytical progress and simple insight to be gained
the porous material made by the fines will be assumed to be approx-
imated by a series of isolated cuts in a solid silicon material and
furthermore that problem will be taken to be two dimensional so the
holes can be considered as channels. These channels will be taken
to be long and thin, corresponding to a layer of fines that is many
particles thick.

Consider the idealised geometry and the notation set out in Fig. 1.
The molten silicon enters a narrow channel with the walls repre-
senting the fines made of solid silicon. Because the liquid is typically
only just above the melting point assume that the liquid is at the
solidification temperature, Tm, and that the solid is initially at air
temperature, Ta. The molten silicon will flow into the channel due to
the pressure created by overlying pool of static molten silicon which
we shall assume gives a known pressure p0 at the inlet of the channel.
There is a free surface between the liquid fluid and the underlying
air that moves down the channel. The details of the free surface will
be complicated by the wetting of the solid silicon by the liquid sili-
con but here we shall simply assume that this surface is horizontal
and at atmospheric pa (we assume the air can easily escape from the
region).

Take z as the vertical coordinate (pointing down the channel) and
x as the horizontal coordinate. The channel entrance is at z = 0 and
there is a the free surface between the molten silicon and the air in
the channel which is assumed to be a horizontal surface given by z =
Z(t). By symmetry we only need to consider one half of the channel so
take x = 0 to be the solid wall and x = a to be the channel centreline.
Furthermore, we neglect the finite horizontal size of the particles and
assume that the solid extends to minus infinity in x. The liquid will
solidify, resulting in an interface between solid and liquid which we
denote by x = s(t, z).

To study the problem assume first that the movement of the
liquid down the channel is known so that Z(t) is given (and more
importantly that the inverse Z−1(z) is known) and so only heat flow
need be examined. We will subsequently derive a model for Z(t)
by considering the fluid flow. Hence we start by examining the
heat dynamics of the silicon and particularly the movement of the
interface x = s(t, z).

3. The heat flow problem

For simplicity it has been assumed that the molten silicon is very
close to the melting temperature, Tm and the silicon is very pure. In
such a case it is not necessary to consider any complicated phase
diagram behaviour so there will be a sharp interface as the material
solidifies and only the latent heat of solidification and the diffusion
of heat in the solid need to be accounted for. We use Fourier’s law
for the heat flux and conservation of energy to justify the use of the
heat diffusion equation (see [10] for details). This is a free boundary
problem (in particular it is a one-phase Stefan problem) where the
phase boundary, which separates the solid silicon from the molten
silicon, must be found as part of the problem. At the phase bound-
ary the temperature of the silicon will be at the melting temperature
and the interface moves according to the Stefan condition which can
be derived from an argument of conservation of energy (see [11]
for details). The problem is symmetric about the line x = a, so we
expect a phase boundary to emerge from each wall of the narrow
channel. Hence we need only consider one half of the channel, and
therefore only one phase boundary. Without loss of generality, we

Table 1
List of dimensional parameter values provided by Elkem. Q3

Constant Typical value Units

Tpot 323 K
Tm 1683 K
T0 1700 K
Ta 293 K
d 0.03–0.1 m
q 2533 kg/m3

L 1798060 J/kg
ks 43 W/mK
kl 23.5 W/mK
cs 970 J/kg K
cl 970 J/kg K
h 0.02 m
a 0.002 m
pa 101325 kg/ms2

g 9.8 m/s2

l 0.02 kg/ms

shall consider the region x ∈ (−∞, a] and let the position of the phase
boundary be denoted x = s(t, z).

The heat flow in the solid is governed by the two-dimensional
heat equation

qcp
∂T
∂t

= k∇2T, (1)

where q, cp, and k are the density, specific heat capacity and ther-
mal conductivity of the material respectively, which are all taken
to be constant. In the narrow channel, however, the diffusion dis-
tance is much shorter than the channel length so that the heat flow
in the solid is approximately governed by the one-dimensional heat
equation

qcpTt = kTxx. (2)

One consequence of this one-dimensional heat flow approximation
is that at any particular position down the channel, z, for times before
the interface arrives, t < Z−1(z), the temperature will remain at its
initial state and there is no solidification so that s(t, z) = 0. Therefore
the heat flow at any position z only needs to considered t ≥ Z−1(z).

At the phase boundary the temperature must equal the melting
temperature, so

T(s(t, z), z, t) = Tm. (3)

We have taken the density to be the same in both the liquid and the
solid as the density of silicon only varies by about 2% at this tran-
sition. A list of the values of the various constants can be found in
Table 1.

To change phase, the latent heat, L, of the silicon must be
removed. The ‘Stefan condition’ (see [11]) dictates that the latent
heat required to move the interface must be removed by the differ-
ence between the heat fluxes at either side of the solidification front.
Considering that the temperature is constant (at melting tempera-
ture) in the liquid region, then we get

qL
∂s
∂t

= k
∂T
∂x

, (4)

at x = s(z, t).
To solve this problem consider the following scalings for each

variable:

t =
qLa2

kl (Tm − Ta)
t̂, x = ax̂, T = Tm + (Tm − Ta) T̂. (5)
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