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A B S T R A C T

The decay of homogeneous isotropic turbulence in a variable viscosity fluid with a viscosity ratio up to 15 is
analyzed by means of highly resolved direct numerical simulations (DNS) at low Reynolds numbers. The
question addressed by the present work is how quantities such as the kinetic energy and the associated dis-
sipation rate, as well as the inter-scale transport mechanism of turbulence are changed by local fluctuations of
the viscosity. The comparison is performed with respect to the decaying homogeneous isotropic turbulence with
constant viscosity (CV), equal to the mean value of the variable viscosity (VV). From the one-point budget
equation of the turbulent kinetic energy, it is shown that the mean dissipation rate is nearly unchanged by
variable viscosity effects. This result is explained by a negative correlation between the local viscosity and the
local velocity gradients. However, the dissipation is a highly fluctuating quantity with a strong level of inter-
mittency. From a statistical analysis it is shown that turbulent flows with variable viscosity are characterized by
an enhanced level of small-scale intermittency with respect to CV flow, which results in the presence of smaller
length scales. The effect of variable viscosity on the turbulent cascade is analyzed by a budget equation for the
velocity structure function. From DNS it is shown that viscosity gradients contribute to the inter-scale transport
mechanism in the form of an inverse transport, where information propagates from the small scales to the large
scales.

1. Introduction

Turbulent flows encountered in engineering and environmental
applications are very often characterized by spatio-temporal fluctua-
tions of viscosity, which results from variations of temperature or
species composition. A prominent example from geophysical flows is
the convection in the earth’s mantle, where the viscosity decreases with
temperature. An other important case is the turbulent mixing in com-
bustion systems, where a concentration dependent viscosity may affect
the efficiency of turbulent mixing.

Fully developed turbulence reveals a large range of length scales,
varying from the so-called integral length scale lt, at which large ve-
locity fluctuations occur, down to the smallest scale, the so-called
Kolmogorov or dissipation scale η, at which turbulent fluctuations are
dissipated due to viscosity. According to Kolmogorov’s first hypothesis
(Kolmogorov, 1941a; Kolmogorov, 1941b), enunciated for fluids with
homogeneous physical properties, the statistics of the smallest scales
should be universal and depend only on two parameters, namely the
viscosity ν and the mean energy dissipation rate ⟨ε⟩. Kolmogorov’s
second hypothesis postulates that large scales of the flow decouple from

the smallest scales and should become independent of viscosity, pro-
vided that the Reynolds number is sufficiently high. However, nu-
merous experimental and numerical studies have indicated that Kol-
mogorov’s traditional view is a crude assumption and that large and
small scale quantities are strongly coupled, cf. Sreenivasan and
Antonia (1997), Warhaft (2000). This coupling is referred to as Finite
Reynolds Number effect (FRN) and it has been widely shown that is
flow specific Antonia et al. (2015). The situation is even more complex
for turbulent mixing with local viscosity variations. One has to cope
with a turbulence-scalar interaction which is two-fold: the fluid motions
affect the scalar mixing, while mixing induced viscosity changes affect
the dynamics of the velocity field.

Viscosity represents the most important property of turbulent flows,
and the impact of its variation on the dynamics should be addressed in
detail. Most studies reported in literature have focused on the impact of
variable viscosity on the large scales. Chhabra et al. (2005) and
Talbot et al. (2013) studied turbulent jet flows, where the viscosities of
the jet and host fluids differ. They observed, compared to CV flow, that
the relationship between production and dissipation of turbulent en-
ergy is altered and that the entrainment and the spreading rates of the
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jet flow are changed. An altered spreading rate was also observed by
direct numerical simulations of turbulent shear layers with variable
viscosity by Taguelmimt et al. (2016a,b) indicating the ability of visc-
osity variations to modify the largest scales of the flow.
Voivenel et al. (2017) further confirmed these findings using laser
measurements and derived generalized scale-by-scale budget equations
for velocity increments in inhomogeneous and anisotropic turbulence
with variable viscosity. Based on this work, Danaila et al. (2017)
showed that variable viscosity effects can invalidate the self-similarity
of turbulent jet flows. The analysis of Lee et al. (2008) focused on the
turbulent mixing of two initially segregated fluids with different visc-
osity in homogeneous isotropic turbulence. They found that the dis-
sipation becomes independent of viscosity confirming Taylor’s postu-
late. Taylor (1935) postulated that the mean energy dissipation ⟨ε⟩
depends only on the large-scale velocity fluctuations u′ and the integral
length scale lt, i.e.
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and hence becomes independent of viscosity, provided that the Rey-
nolds number is sufficiently large. In Eq. (1), the characteristic large-
scale velocity fluctuations are defined as

′ =u u /3 ,i
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and the integral length scale lt is defined as
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with E(κ) being the three-dimensional energy spectrum and κ the
magnitude of the wave-number vector. Ensemble-averages are denoted
by angular brackets and Einstein’s summation convention is used,
which implies summation over indices appearing twice.

In this paper, we investigate the decay of homogeneous isotropic
turbulence in a variable viscosity fluid by means of highly resolved
direct numerical simulations (DNS). We address the question how
quantities such as the kinetic energy and the associated dissipation rate,
as well as the inter-scale transport mechanism of turbulence are
changed by local fluctuations of the viscosity. The paper is structured as
follows. Section 2 presents the governing equations and the direct nu-
merical simulations on which the analysis is based. Section 3 introduces
the one-point budget equation of the turbulent kinetic energy and dis-
cusses the impact of variable viscosity on the dissipation mechanism of
turbulence. Section 4 addresses the impact of variable viscosity on the
viscous cut-off scales of turbulence. An analysis of the inter-scale
transport mechanism based on a budget equation for the second-order
velocity structure function is presented in Section 5. We summarize this
study in Section 6.

2. Direct numerical simulations and governing equations

Direct numerical simulations of homogeneous isotropic turbulence
with variable viscosity at three different viscosity ratios, between 1 and
15 have been performed. The DNS solves the three-dimensional in-
compressible Navier–Stokes equations,
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with the continuity equation
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in a triply periodic box with size 2π by a pseudo-spectral method. In
eqs. (4) and (5), the velocity field is denoted by uj, p is the pressure (for
simplicity the density 1/ρ is incorporated in p), ν is the local viscosity,
and sij is the strain-rate tensor, defined as
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Note that because the viscosity fluctuates, Eq. (4) contains one
supplementary term (∂ν/∂xisij), which introduces another non-linearity
(ν depends on the scalar, which is transported by the velocity field).

The local viscosity field ν(x, t) is determined by solving an advec-
tion-diffusion equation for a scalar field ϕ(x, t), i.e.
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The scalar ϕ is statistically isotropic and homogeneous. For numerical
convenience the scalar is further bounded, i.e. − ≤ ≤xϕ t1 ( , ) 1, and
has zero mean, i.e. =ϕ 0. Ensemble-averages are computed due to
homogeneity over the full computational domain. The local viscosity
ν(x, t) is linked through a linear relation to the scalar field, e.g.
Gréa et al. (2014)

= + ′ = +x x xν t ν ν t ν cϕ t( , ) ( , ) ( , ) , (8)

where ⟨ν⟩ denotes the uniform mean viscosity, ν′(x, t) denotes the
fluctuating viscosity field, and c is a positive constant with c< ⟨ν⟩ to
ensure positivity of ν(x, t). A linear relation between ν and ϕ is con-
venient because it keeps the mean viscosity ⟨ν⟩ unchanged during the
decay. The constant c is obtained from the initial minimum and max-
imum values of the viscosity by = −c ν ν( )/2,max min which implies that
the initial scalar variance ⟨ϕ2⟩ equals unity. In the following, we use ϕ
as a surrogate for ν. The molecular diffusivity D in Eq. (7) is assumed to
be constant and equals the mean viscosity = +ν ν ν( )/2min max . As a
consequence, the Schmidt number, defined as =Sc ν D/ , is a fluctuating
quantity.

The following paragraph briefly summarizes the main features of
the DNS. More details about the numerical procedure and the paralle-
lization approach are given by Gauding et al. (2015, 2017). Adapting
the approach by Mansour and Wray (1994), the Navier–Stokes equa-
tions are formulated in spectral space as
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where
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is the Fourier transform of the non-linear terms, including the con-
vective term and the non-linear part of the viscous term. The wave-
number vector is denoted by κ, and the Fourier transform of the velocity
field is denoted by ̂u . The projection operator = −P δ κ κ κ/ij ij i j

2 imposes
incompressibility. The non-linear terms are computed in physical space
and a truncation technique with a smooth spectral filter is applied to
remove aliasing errors. The smooth spectral filter is highly localized in
both real and spectral space, and was found to be dynamically very
stable, cf. Hou and Li (2007). This feature is relevant for the present
study to prevent instabilities at high wave-number modes caused by the
non-linear part of the viscous term. An integrating factor technique is
used for an exact integration of the linear part of the viscous terms.
Temporal integration is performed by a low-storage, stability preser-
ving, third-order Runge–Kutta scheme. An additional necessary con-
straint that has to be satisfied by the DNS is an adequate resolution of
the smallest scales. As proposed by Mansour and Wray (1994), we re-
quire that for all times, the condition κmaxη0≥ 1 is satisfied, where

=η ν( / ɛ )0
3 1/4 is the Kolmogorov length scale and κmax is the largest

resolved wave-number. A grid resolution of 10243 points is used to
appropriately account for both small and large scales.

Let us now turn our attention to the initialization of the DNS. For the
velocity field, we follow the approach of Ishida et al. (2006) and pre-
scribe a broad-band energy spectrum of the type

= ∝ −E κ t κ κ κ( , 0) exp( 2( / ) ) .p
4 2 (11)
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