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Surface roughness in turbulent channel flow is effectively modelled using a modified version of the Parametric
Forcing Approach introduced by Busse and Sandham (2012). In this modified approach, the model functions are
determined based on the surface geometry and two model constants, whose value can be fine tuned. In addition
to a quadratic forcing term, accounting for the effect of form drag due to roughness, a linear forcing term,

analogous to the Darcy term in the context of porous media, is employed in order to represent the viscous drag.
Comparison of the results with full-geometry resolved Direct Numerical Simulation (DNS) data for the case of
dense roughness (frontal solidity =~0.4) shows a satisfactory prediction of mean velocity profile, and hence the
friction factor, by the model. The model is found to be able to reproduce the trends of friction factor with
morphological properties of surface such as skewness of the surface height probability density function and
coefficient of variation of the peak heights.

1. Introduction

Study of turbulent flows over rough surfaces finds application in
several engineering — e.g. turbomachinery, marine transportation and
ice accretion on aircrafts — and geophysical — e.g. wind flow over plant
and urban canopies — problems. Roughness causes an increase in the
friction factor.
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In Eq. (1) 7, and U, denote wall shear stress and bulk velocity. It is
also well established that roughness leads to a shift AU* in the loga-
rithmic law of the wall (Nikuradse, 1933; Hama, 1954).
U*() = 2In() + 5.5 — AU*

x 2
where x = 0.4 is the von Kdrman constant and the value 5.5 is the log-
law intercept for a smooth wall. It can be shown that an increase in the
roughness function AU* corresponds to an increase in friction factor
(Jimenez, 2004; Flack and Schultz, 2010).

Alternatively, Eq. (2) can be written as
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where roughness function AU" is replaced by the interchangeably
usable quantity k, — effective or equivalent sand-grain roughness height
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(Jimenez, 2004). For a majority of practical rough surfaces (so called k-
type roughness), ks is “proportional to the dimensions of roughness
elements”, provided that the roughness elements are large enough to
fall into the ‘fully-rough’ regime (Jimenez, 2004). The ratio of k; to the
physical characteristic dimension k of roughness is a function of the
surface geometry (Jimenez, 2004). A comprehensive review on the
dependence of the ratio ky/k on different geometrical surface para-
meters has been undertaken by Flack and Schultz (2010). Recently,
Forooghi et al. (2017) and Thakkar et al. (2017) investigated several
irregular rough surfaces using DNS in order to determine the most
important surface parameters for the prediction of flow properties, i.e.
AU™ or k. There is a consensus among above references that, at con-
stant roughness density, flow properties are most sensitive to the
skewness Sk of the surface height probability distribution function.
Surface slope also plays an important role in determining both skin
friction and physics of the flow. With a decrease in effective slope —
defined as mean absolute streamwise surface slope — form drag loses its
dominance in the momentum exchange between the surface and flow
(Napoli et al., 2008; Schultz and Flack, 2009).

DNS in which the details of surface geometry are resolved is re-
quired to guarantee that both roughness and flow scales are properly
accounted for. A number of such simulations have been published in the
past, in which the surface geometry is captured either by body con-
forming grids (Choi et al.,, 1993; Chan et al., 2015) or immersed
boundary method (IBM) (Orlandi and Leonardi, 2006; Bhaganagar,
2008; Busse et al., 2015; Forooghi et al., 2017; Mazzuoli and Uhlmann,
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2017). Both approaches are extremely demanding in terms of compu-
tational cost and/or grid generation effort. A way to avoid such diffi-
culties is using a modified version of the Navier-Stokes equation near
the wall, in which roughness is ‘effectively’ modelled. These models,
clearly, do not process the degree of fidelity that full-surface resolved
DNS provides, thus, require careful verification. In the framework of
Reynolds-averaged Navier-Stokes, for instance, so-called Discrete Ele-
ment Method (DEM) has been used for a long time (Taylor et al., 1985;
Tarada, 1990). In DEM, roughness geometry is represented by simple
roughness elements and the mass and momentum conservation equa-
tions are averaged over control volumes containing several of these
elements. Effects of form drag and vortex shedding from roughness
elements enter the momentum and turbulent kinetic energy equations
through source terms; consequently, not only the momentum equation
but also turbulence transport equations contain extra ‘modelled’ terms.

The idea of modifications in Navier-Stokes equation for roughness
modelling has also been used in LES and DNS context. Cui et al. (2003)
suggested an approach in which an arbitrary rough surface is decom-
posed into two parts: resolved scale and sub-grid scale roughness, for
the former immersed boundary method and for the latter a random
body-force model is used. For very high Reynolds numbers where the
roughness height falls below the first near-wall grid point,
Anderson and Meneveau (2010) suggested an LES model in which a
body force is applied within the first grid-point. The value of the body
force is determined based on total incoming momentum flux into the
roughness.

Busse and Sandham (2012) proposed a Parametric Forcing Ap-
proach (PFA) in which the effect of roughness is introduced by adding
the body force term — «;F(y)u;|u;| to the otherwise-unchanged Na-
vier-Stokes equation (no summation over index i). u; denotes in-
stantaneous velocity and i = 1, 2, 3 indicate streamwise, wall-normal
and spanwise directions corresponding to X, y, z coordinates, respec-
tively. o; and F,(y) are referred to as ‘roughness factor’ and ‘roughness
shape function’ by these authors, respectively. They further simplify the
model by applying g F; = a3 F; = aF and o, = 0. By using a DNS grid,
PFA involves no other modelling except for the forcing term that re-
presents the momentum exchange between the flow and roughness,
therefore, it is possible to purely evaluate the performance of roughness
modelling terms. In the PFA introduced in Busse and Sandham (2012)
the function aF is not directly related to a specific roughness geometry,
therefore, cannot be determined a priori.

The present work aims at a modified version of PFA, in which -
apart from the tunable scalar model constants — the forcing amplitude
can be determined a priori for a desired roughness geometry, so that the
mean flow profile and, thus, the ‘friction factor’ can be predicted cor-
rectly. The model is expected to satisfactorily capture the trends of
friction factor with two important topographical surface parameters,
i.e. ‘skewness’ and ‘coefficient of variation of roughness peak heights’.
Full-geometry resolved DNS data from Forooghi et al. (2017) is used to
evaluate the model and its capability to follow the physical trends.

2. Roughness samples

Four roughness samples with systematically chosen geometrical
surface parameters are considered in the present paper. The full-geo-
metry resolved DNS for these surfaces have been reported by
Forooghi et al. (2017); in the present work the ‘geometrical functions’
required in the modified PFA (details in Section 3) are calculated
for the same samples and the results are compared. The geometry of
roughness is generated using an algorithm explained in full in
Forooghi et al. (2017), which creates 3D irregular rough surfaces
k(x, 7). Briefly, the geometry is generated by mounting axisymmetric
roughness elements with prescribed shape and spacing in a random
pattern on a smooth ‘reference plane’ which is the lower boundary of
the computational domain. Certain topographical properties of the
roughness can be adjusted in this approach. Before discussing these

International Journal of Heat and Fluid Flow 71 (2018) 200-209

Table 1

Summary of surface samples used in the present study and the values of
Reynolds number in the simulations. Results for cases Ia, II and III are discussed
in details in Forooghi et al. (2017).

Sample k/H kyp/H Sk A k+ Re,
Ia 0.12 0.074 0.21 0.7 67 498
b 0.06 0.037 0.21 0.7 32 500
Jig 0.12 0.047 0.66 0.7 64 502
Juis 0.19 0.1 0.21 0 110 499

properties, it should be stressed that in the present study we focus on
the roughness elements with high slopes. As discussed in the in-
troduction, a rough surface with low slope does not behave in the same
way as ‘normal’ roughness does. Schultz and Flack (2009) showed that
when the surface slope falls below a certain threshold, the effective
roughness height does not scale with the physical dimensions of
roughness; therefore, they proposed calling this type of surfaces ‘wavy’
instead of ‘rough’. These authors also suggested a threshold of 0.35 for
the effective slope of a wavy surface. Yuan and Piomelli (2014), later
on, found a considerably higher threshold equal to 0.7. The surfaces
used in this work all have an effective slope equal to 0.88 which should
be high enough to avoid any ‘waviness’ behaviour.

As discussed in the introduction, data published in the literature
suggest that, at a constant effective slope, skewness Sk defined as

1
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Sk = /; (k — kyp)’dA, k2, = < /; (k — kyp)'dA

“@
can control the effective roughness height to a high extent. In Eq. (4), A
is the surface area projected on the reference plane, shortly wall-pro-
jected area, and kpsp (melt-down height) is the mean surface height. k,
which is the surface height from the reference plane, is a function of
coordinates in y-normal plane, i.e. k (x, z). Forooghi et al. (2017) found
that at constant skewness, a roughness composed of ‘uniform’ elements
shows a higher resistance to flow than one with non-uniform elements.
To measure the non-uniformity of the peak heights a ‘coefficient of
variation’ A, defined as the height difference between the highest and
the lowest peaks of the surface normalized with the mean peak height,
is used.

Table 1 summarizes the geometrical properties of the surface sam-
ples. Sample Ia is used as the control case. Compared to this sample,
sample II has a higher skewness but a similar A, while sample IIT has a
similar Sk but its A is zero (uniform peak heights). Sample Ib has the
same topographical properties as Ia but its dimensions are scaled down.
Mean roughness peak height k' is halved in Ib compared to Ia. The
values of k* shown in the table suggest that the studied surfaces likely
span all the way between the transitionally-rough and fully-rough re-
gimes, which facilitates assessing the versatility of the model under
investigation.

The values of friction velocity Re, for each case — similar for the
reference DNS and present simulations — are also listed in Table 1.

u:(H — kyp)
v

Re. = (5)
In Eq. (5), H is the distance between the bottom plane and the middle of
the channel, i.e. the wall-normal dimension of the computational do-
main (see Section 4 for the complete description of the computational
set-up), therefore, the length scale (H — kyp) used in the definition of
Reynolds number is the half-height of a channel with the same cross-
section area or, namely, the ‘effective’ half-height of the channel. The
friction velocity u, = (Tw/p)% is based on the wall shear stress and is
calculated from the integral momentum balance using the mean

1 This quantity is used as the representative dimension of the roughness throughout the
paper.
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