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A B S T R A C T

Forced convective heat transfer in pipes is investigated for viscoelastic fluids obeying the Giesekus constitutive
equation including effect of slip condition by an approximated analytical method. The slip equation at wall is
considered as a nonlinear Navier model with non-zero slip critical shear stress. The problem under consideration
is steady, laminar and fully developed. Thermal boundary conditions are assumed peripherally and axially
constant heat flux at wall. The fluid heating and cooling cases are considered for analysis. Dimensionless tem-
perature profiles and Nusselt number are obtained by solving governing equations and the effects of slip
parameters, viscous dissipation and fluid elasticity are discussed. Results show that Nusselt number increases by
increasing slip effect but decreases by increasing Brinkman number for the case of fluid heating. However, for
the cooling case, the heat generated by viscous dissipation can overcome the effect of wall cooling at first critical
Brinkman number and fluid starts to warm up. Also the Nusselt curve shows a singularity in a second critical
Brinkman number.

1. Introduction

The heating and cooling processes have to use the non-Newtonian
fluids in a broad variety of equipment and industries related to fluid
such as shell and tube heat exchangers, polymer and plastic extrusion,
drilling operations and food industries (Chhabra and Richardson, 1999;
Yamaguchi, 2008). Therefore, the knowledge of heat transfer is man-
datory for the equipment design and quality control of the final pro-
ducts. Also the empirical evidences indicate that, in certain circum-
stances, most of these complex fluids may be slipped at the solid
boundary which again has a strong influence to quality of final products
such as sharkskin, stick-slip, and gross melt fracture instabilities in
polymer extrusion. Slip can be occurred by three mechanisms as below:

– Adhesive failure of the polymer chains on the solid surface leading
to detachment of the absorbed chains from the wall.

– Cohesive failure arising from disentanglement of the bulk chains
from chains adsorbed at the wall, and then disentangled chains will
slip over adsorbed chains.

– Formation of a low viscosity layer of solvent which is known to low-
viscosity mesophase and the bulk polymer chains slip on this layer.

One of the most common models for determine the slip velocity at

the wall is the nonlinear Navier slip law which is based on experimental
results and consists in a power law relationship between slip velocity
and shear stress at the wall as follows:
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where uw, τw and s are the slip velocity, shear stress at wall and power
law index respectively.

β is the slip coefficient which depends on temperature, normal
stress, molecular parameters and properties of the fluid/wall interface
(Denn, 2001). As β→ 0 full slip flow and β→∞ no slip boundary
condition are recovered. Fig. 1 shows the Hagen–Poiseuille velocity
profile for slip and no slip boundary conditions.

Since the empirical evidence shows the slip occurs only when wall
shear stress exceeds a critical value (Mohseni and Rashidi, 2015)
therefore the nonlinear Navier slip model is employed under the fol-
lowing form:
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Effect of slip condition in the flow field of Newtonian and non-
Newtonian fluids has been investigated extensively (Damianou et al.,
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2014; Ferras et al., 2012a, 2012b; Matthews and Hill, 2007; Chatzimina
et al., 2009; Kalyon and Malik, 2012; Pereira, 2009; Kaoullas and
Georgiou, 2013; Housiadas, 2013; Damianou et al., 2013; Tang and
Kalyon, 2008a, 2008b) but research on heat transfer is scant. Analytical
solutions for heat transfer and entropy generation of Newtonian fluid in
microchannel were obtained by Anand (2014) considering slip
boundary conditions. The non-linear Navier, Hatzikiriakos and
asymptotic slip laws were employed and the microchannel walls were
subject to uniform heat flux. Finally, the effect of slip at walls on ve-
locity distribution, temperature distribution, Nusselt number, entropy
generation rate and Bejan number has been reported in this paper.
Shojaeian and Kosar (Shojaeian and Kosar, 2014) investigated effect of
slip condition on convective heat transfer and entropy generation for
Newtonian and non-Newtonian fluid using the linear Navier slip model
between parallel-plates. The thermal boundary conditions were as-
sumed isoflux and isothermal and the expressions for velocity, local and
mean temperature distributions, Nusselt number, entropy generation
and Bejan number were obtained analytically. The slip effect on flow
and thermal fields of Ostwald–de Waele power law fluid in circular
microchannel are studied by Barkhordari and Etemad (2007) using
control volume finite difference method. The slip velocity in their study
is defined as a constant coefficient of mean velocity of fluid and thermal
boundary conditions are considered constant temperature and constant
heat flux at wall. Eventually, the influence of slip coefficient on friction
factor and Nusselt number were investigated. Mahjoob et al., (2009)
performed a similar research in rectangular microchannel. To the best
of our knowledge, the slip effect on convective heat transfer of vis-
coelastic fluid, with effect of critical shear stress in slip model, has not
been yet investigated. Then, we propose in the present study an ana-
lytical approach of forced convection heat transfer in pipe for laminar,
steady state and fully developed flow of nonlinear viscoelastic fluid
obeying Giesekus model with accounting slip effect. The slip law at wall
employed is the nonlinear Navier one with non-zero slip critical shear
stress. The canonical geometry of pipe flow is considered in the present
paper regarding its wide range of applications.

2. Governing equation

The problem under consideration is steady, laminar, thermally and
hydrodynamically fully developed flow in a pipe (see Fig. 2). Axial heat
conduction is neglected compared to the radial heat transfer by the
order of magnitude analysis (Kakac and Yener, 1995). The effect of
viscous dissipation is included due to the high viscosity of viscoelastic
fluids considered. Thermophysical properties of fluid are taken

independent of temperature. This assumption sounds reasonable since
temperature variations are not high enough to significantly change
fluid properties (Oliveira and Pinho, 2000; Bird et al., 1987; Mohseni
et al., 2015).

The continuity, momentum and Giesekus constitutive equations
(without retardation time) are:
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η and λ are the model parameters representing zero shear viscosity and
zero shear relaxation time, respectively (Giesekus, 1983). In particular,
the zero shear relaxation time is corresponding to the time that the
stresses arising from shear rate relax after the fluid motion has stopped,
which is characteristic of viscoelastic fluids (Bird et al., 2001). The
model parameters are function of shear rate. They approach to a con-
stant value at very low shear rate which are named zero shear model
parameters. Parameter α in Eq. (3c), lying in the range 0≤ α≤ 1
(Giesekus, 1982) is a mobility factor. The term containing α in the
constitutive equation is attributed to anisotropic Brownian motion and/
or anisotropic hydrodynamic drag on the constituent polymer mole-
cules (Bird et al., 1987).

Dimensionless quantities are as follows:
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Where U is the average velocity over cross-section of the pipe and
described as follows:
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3. Analytical solution

3.1. Hydrodynamic solution

The shear stress equation is derived from Eq. (3b) as follows:

=τ
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2rz (8)

The shear rate equation was derived from Giesekus equation by
Yoo and Choi (1989) as follows:
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De is the Deborah number, defined as ( =De λU R/ ), which is related
to the level of fluid elasticity.

The dimensionless form of the slip boundary condition is as follows:
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B and Bc are dimensionless slip number and dimensionless slip

Fig. 1. Schematic diagram of Poiseuille flow with slip boundary conditions.

Fig. 2. Schematic diagram of the pipe and its thermal boundary conditions.
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