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A B S T R A C T

The evolution of the distribution of several bubbles in a channel subjected to periodic oscillations is examined
using direct numerical simulations. The flow is initially quiescent and the bubbles are randomly distributed in
the domain, which is bounded by walls parallel to the direction of oscillations, and periodic in the perpendicular
direction. The results show that the oscillations lead to clustering of the bubbles, generally spanning the channel
cross-section. The dependency of the rate at which the bubbles clusters, the inter-cluster distances and the void
fraction distribution, on the frequency and amplitude of oscillations, as well as the fluid properties, are ex-
amined.

1. Introduction

Gas-liquid two-phase flows are found in equipment used in, for
example, the chemical and power industry. Understanding their beha-
vior is essential for safety and efficiency-driven design of processes, and
many studies have been devoted to such flows (Wang et al., 1987; Liu,
1993; Nakoryakov et al., 1996; Liu, 1997; Kashinsky and Randin, 1999;
So et al., 2002; Guet et al., 2004; Matos et al., 2004; Mendez-Diaz et al.,
2012; Descamps et al., 2008). A description of an early experimental
investigation of the velocity and void fraction distribution in bubbly
flows in vertical pipes can be found in Serizawa et al. (1975), and other
experimental investigations of bubbly flows include (Kobayashi et al.,
1970; Song et al., 2001; Lu and Tryggvason, 2007), where other as-
pects, including the effect of void fraction and bubble sizes, has been
documented. Dabiri et al. (2013) examined bubbly flow in up flow with
Front Tracking (Tryggvason et al., 2001) Direct Numerical Simulation
(DNS) method, and found that above a critical value of the Eötvös (Eo)
number the deformation of the bubbles has minor impact on the flow
rate, while below the critical Eo number the flow rate is nearly constant.
Only in a transition region, between the low flow rate, for low Eo, and
the high flow rate at high Eo, does the flow rate depend strongly on the
bubble deformation. Experimental studies show that bubble size has
significant impact on the bubble distribution. Liu (1993), for example,
found that small bubbles (diameter < 5mm) gather at the wall but
bigger bubbles (diameter > 6mm) stay away from the wall.
Mercado et al. (2010), using three-dimensional particle tracking velo-
cimetry (PTV) and phase-sensitive constant temperature anemometry,
investigated bubble clustering, the mean bubble rise velocity, and

bubble velocities distributions, in pseudo-turbulence flow, and found
that the bubble velocity probability density functions (PDFs) had a non-
Gaussian form. They also saw both vertical and horizontal clusters.

Here, we examine the response of bubbly flows to periodic oscilla-
tions. The study is motivated by an interest in the response of multi-
phase systems, such as heat exchangers and power plants on-board
ocean-going vessels, to unsteady accelerations. Wind forcing and
earthquakes may also lead to periodic accelerations, although in the
latter case the duration is likely to be short. As a ship rolls in response to
ocean waves we expect pressure oscillations that may impact the flow
rate as well as the void fraction distribution. Significant changes in the
void fraction are likely to make predictions based on results for non-
oscillating systems unreliable and unfavorable void fraction distribu-
tion can affect heat transfer, enhance thermal fatigue and even cause
burnout in boiling systems. This is likely to be a particular concern for
narrow parallel board heat exchangers, where the walls are weaker and
more sensitive to changes in loading in oscillatory flow. Oscillation flow
is also sometimes used to enhance mass transfer in bubble columns, as
discussed by Buchanan et al. (1962), Baird and Garstang (1972) and
Krishna and Ellenberger (2002), for example. Roig et al. (2012) ex-
perimentally studied bubbly flow in a thin gap, Hele-Shaw like flow
(Bouche et al., 2012), and found that although the bubbles are confined
by the gap, the bubbles can move freely in the two directions parallel to
the walls. Spicka et al. (2001) compared two-dimensional CFD simu-
lation results on slug flow and bubbly flow with experimental data,
which verified the two-dimensional simulation assumption.
Bouche et al. (2012) experimentally examined bubble rise velocity,
path and the dispersion of the gas phase in a homogeneous swarm of
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bubbles confined within a thin gap. They found that the bubbles rise
along oscillatory paths while keeping a constant shape, and that the
bubble dispersion coefficient increased almost linearly with the volume
fraction.

One type of oscillatory bubbly flow is called Cavitation Resonance,
first described by Li et al. (2008) in 1983, where under certain flow
conditions a particular component of pressure change would be sig-
nificantly magnified, when studying Venturi tube. Further work on this
phenomena has been done by Li’s team and other researchers
(Li, 2000). Chen et al. (2008) used a DNS front-tracking method to si-
mulate the propagation of the pressure oscillation. In their work, a
sudden pressure jump was applied at the top boundary of the simula-
tion domain to study the volume change of the compressible bubbles. It
was found that the bubbles’ volume oscillate but the frequency is in-
dependent of the excitation.

We note, however, that the bubbles do not need to be compressible
to have significant effect on the structure of the flow, as shown here.
Gao is best known for early studies on the heat transfer at ocean con-
dition. Her experimental study has focused mainly on rolling platforms
(Gao et al., 1999). Recently, her team further simplified the ocean
condition experimental setup by forcing the flow by changing the
pump’s turning speed (Zhou et al., 2012), giving a sinusoidal driven
force. They found that the phase difference between the flow rate and
the pressure drop is related to the frequency of oscillation.

2. Problem formulation and computational setup

To simplify the problem, we consider the flow in a straight rec-
tangular channel with periodic boundaries in the stream wise (Y) di-
rection, see Fig. 1. No slip boundary condition is used for the side walls.
The fluid velocity is initially zero but a cyclic pressure gradient sets up
the oscillating flow. Thus, we write the pressure as sum of the imposed
oscillations and a perturbation pressure to enforce incompressibility in
the usual way:

∇ = ∇ ′ +p p C ωtj sin( ). (1)

Here ω is the frequency of the pressure oscillations, j is a unit vector
in the Y direction, and C is the amplitude. We ignore gravity and do not
allow the bubbles to coalescence. Several bubbles are initially placed
randomly in the domain, but a finite minimum distance is imposed
between every two bubbles in the channel. We examine how their lo-
cations change with time. For all the two-dimensional simulations de-
scribed here we take the domain width and length to be 2× 2 in
computational units, and use 256× 256 grid points to resolve the do-
main.

The dynamics of the fluid is governed by the Navier–Stokes equa-
tions, which can be written as
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Here, u is the velocity, p is the pressure, ρ and μ are the discontinuous
density and viscosity fields, and fs stands for the surface force. This
equation applies to the whole flow field, including both the liquid and
the gas. Here we also assume that the flow is incompressible so that

∇ =u· 0. (3)

The governing equations are solved using a finite-volume/front-tracking
method, originally developed by Unverdi and Tryggvason (1992), and
then improved and verified by Tryggvason et al. (2001). The Navier–-
Stokes equations are solved by an explicit second order discretization on
a staggered grid and the interface between the gas and the liquid is
explicitly tracked by connected marker points. This method has been
used for direct numerical simulations of a wide range of multiphase
flows and is described in detail in, for example, Tryggvason et al. (2001).

The dynamics is governed by three nondimensional numbers, in
addition to the ratios of the density and the viscosity of the gas and the
liquid, which we assume to be sufficiently small as to have a small effect
on the dynamics. If we use the diameter of the bubbles, D, the density of
the liquid and the frequency of the pressure oscillations to non-
dimensionalize other variables, three nondimensional numbers are
obtained, the Reynolds, Weber and Euler number defined by:
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Here, σ is the surface tension coefficient and ρl and μl are the density
and viscosity of liquid. In the limit of small We we expect the bubbles to
be spherical (cylindrical in two-dimensional flow) and the evolution to
be independent of We and in the limit of high Re we expect the evo-
lution to be independent of Re. For small Eu, where the pressure fluc-
tuations are so fast that the flow does not have time to respond, we also
expect the pressure fluctuations to have little effect. When presenting
the results we nondimensionalize velocity by =∼u Dω

u and time by
=t tω͠ .
We note that here we use relatively modest density and viscosity

ratios, thus considering light drops or gas bubbles in very high pressure
systems. We do, however, believe that the results should apply, at least
approximately, to gas bubbles in liquid, and therefore refer to the light
drops as bubbles. We have not, at the present time, studied exactly how
different the results are from true gas bubbles at atmospheric pressure.

3. Results

Several simulations have been carried out for two-dimensional
channels. In most of the simulations, we place 29 bubbles, with dia-
meter 0.2, randomly in a square domain and follow their evolution for
different nondimensional forcing frequencies and amplitudes. In Fig. 2
we show the bubbles at three different times (nondimensional time
3.98, 20.73 and 460.56) for one particular case where =Re 21,

=We 0.44, =Eu 2.76, a density ratio of 10 and a viscosity ratio of 5. In
addition to the bubbles, the instantaneous vorticity (left half of each
frame) and streamlines (right half) are also shown. At the earliest time
the bubbles are still randomly distributed and close to their initial lo-
cations, but as time evolves, horizontal clusters appear that eventually
span the width of the channel.

The average liquid velocity is plotted in Fig. 3(a). In the left part of
the Figure we show the first few cycles and in the right part we show
the average velocity after many cycles, when the motion has reached an
approximately steady oscillation state. The average slip velocity be-
tween the bubbles and the liquid is shown in Fig. 3(b), for the first few
cycles on the left and after a long time on the right, in the same way as
in Fig. 3(a). The slip velocities were computed as the averaged gas
velocity minus the averaged liquid velocity. It is immediately clear that
the amplitude of the slip velocity is smaller at a late time compared to
the initial time, indicating that the bubbles follow the liquid more
closely than at the beginning.

The most noticeable change in the flow with time is that the bubbles
line up across the channel, forming horizontal clusters. Indeed, this is
likely to be the main reason for the reduction in the slip velocity be-
tween the bubbles and the liquid, seen in Fig. 3(b). There are several
ways to quantify the clustering, but here we use the approach describedFig. 1. 2D simulation domain set.
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