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A B S T R A C T

This work presents developments to a novel evolutionary framework that symbolically regresses algebraic forms
of the Reynolds stress anisotropy tensor. This work contributes to the growing trend in machine-learning for
modelling physical phenomena. Our framework is shown to be computational inexpensive and produce accurate
and robust models that are tangible mathematical expressions. This transparency in the result allows us to
diagnose issues with the regressed formulae and appropriately make amendments, as we further understand the
regression tools. Such models are created using hybrid RANS/LES flow field data and a passive solving of the
RANS transport equations to obtain the modelled time scale. This process shows that models can be regressed
from a qualitatively correct flow field and fully resolved DNS is not necessarily required. Models are trained and
tested using rectangular ducts, an example flow genus that linear RANS models even qualitatively fail to predict
correctly. A priori and a posteriori testing of the new models show that the framework is a viable methodology for
RANS closure development. This a posteriori agenda includes testing on an asymmetric diffuser, for which the
new models vastly outperform the baseline linear model. Therefore this study presents one of the most rigorous
and complete CFD validation of machine learnt turbulent stress models to date.

1. Introduction

For many design problems of engineering interest, flow is predicted
primarily with Reynolds-Averaged Navier-Stokes (RANS) equations.
This is because of the excessive computational effort required for Large
Eddy (LES) and Direct Numerical Simulation (DNS)
techniques (Hanjalić, 2005). That said, RANS modelling is based on
very limiting assumptions that often fall down unexpectedly and with
catastrophic repercussions for statistical results on moderately complex
geometries (Hunt and Savill, 2005). This is because RANS model un-
certainty remains poorly understood (Ling and Templeton, 2015).
Particular examples include the now classical periodic hills test
case (Temmerman and Leschziner, 2001; Temmerman et al., 2003;
Fröhlich et al., 2005) and the asymmetric diffuser of
Cherry et al. (2008); 2009). ERCOFTAC Workshops surrounding the
former (Jakirlić et al., 2001; Manceau, 2003) and latter (Steiner et al.,
2009) show that RANS closures fail to predict even global flow features
reliably. For the periodic hills test case, this manifests as poor reverse
flow prediction and for the diffuser, separation often occurred from the
wrong side of the duct. Note, the periodic hills have been subject to a

recent study (Weatheritt and Sandberg, 2016c), whilst the diffuser is a
large focus of this paper.

Because of this high uncertainty, a plethora of RANS methods exist
throughout the literature (e.g. Leschziner, 2015) and there is no general
consensus on a particular approach. There perhaps may not be a uni-
versal RANS closure that outperforms all others for an arbitrary flow
configuration (Spalart, 2000). With respect to industry standard,
models tend to be variants of the −k ω-SST (Menter, 1994),

−k ɛ (Chien, 1982) and Spalart and Allmaras (1994) turbulence clo-
sures. These three all utilise a linear stress-strain relationship, despite
well known theoretical (e.g. Schmitt, 2007) and practical shortfalls (e.g.
Wilcox, 1993), because of its robustness and the uncertainty in more
complex approaches (Pope, 1999).

Instead, this work adheres to what (Spalart, 2015) terms, an ‘Openly
Empirical’ approach. That is, the turbulence closure aims to correctly
model physics but contains no ‘explicit connection’ to the exact tur-
bulence equations. The models proposed in this work are derivatives
(not in the formal sense) of high-fidelity data sets. Because of the
shortfalls in the linear stress-strain relationship, this is a primary can-
didate for improvement when developing turbulence closures. Rather
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than assuming the task of discovering the universal relationship, we
propose a universal framework for specific closure formulation. That is,
for a given database one obtains a class of stress-strain relationships
suitable for flows at least topologically similar. This is demonstrated in
this paper. Changing model coefficients is widely practised for a cal-
culation, using a given model, for a specific flow. In this paper, we
generalise to alter the stress-strain functional form. Indeed, many tur-
bulence models have been developed for specific flows, take the ex-
amples of jets in crossflow (Bergeles et al., 1978) and turbulent wall jets
(Ljuboja and Rodi, 1981). The latter model was developed specifically
to overcome the standard model’s tuning on free jets. We propose new
non-linear stress-strain relationships, known widely as Explicit Alge-
braic (Reynolds) Stress Models (EASMs or EARSMs) (Pope, 1975; Rodi,
1976), of which many such models exist (e.g. Gatski and Speziale,
1993; Wallin and Johansson, 2000; Craft et al., 2000).

The task of formulating models from data, in the manner presented
here, falls under the umbrella of techniques widely known as machine-
learning. Applications of such techniques for turbulence model devel-
opment is a fast growing area of research and we would denote it
‘Maximally Empirical’, to extend the taxonomy of Spalart (2015). That
is, we enforce Galilean invariance — through an integrity
basis (Spencer and Rivlin, 1958; 1959)— but beyond this, the machine-
learning algorithm is entirely free to formulate mathematical expres-
sions that relate stress to strain.

Similar studies have emerged in previous years which we classify,
rather broadly, into: uncertainty quantification, model development
demonstrating a priori success and model development demonstrating a
posteriori success. Model development infers some modification to the
turbulence closure, whilst we define a priori demonstrations as still
relying on a high fidelity database and a posteriori demonstrations as
full CFD of a flow problem, converging from some initial condition.
Uncertainty quantification, therefore, aims to understand why certain
models fail and model development attempts to correct such defi-
ciencies. A priori relates to the assumption that machine-learning ap-
proaches successfully minimising some objective on high-fidelity data,
a process known as training, will improve CFD performance. A posteriori
aims to demonstrate this reasoning and is consequently much harder to
establish, yet vital for successful industrial implementation.

In efforts to understand uncertainty, databases can be inspected and
used as a road-map (Hunt and Savill, 2005; Schmitt, 2007), to give the
engineer an idea of whether a given closure is applicable for a given
flow topology. More complex machine-learning approaches have had
their ability to identify regions of inaccuracy assessed (Ling and
Templeton, 2015). Presenting another method of general uncertainty
identification, Spalart et al. (2015) have passively solved the RANS
equations using a DNS mean flow to assess closure quality. Edeling et al.
(2014b) used Bayesian methods for identifying the uncertainty in the
values of closure coefficients, whilst Xiao et al. (2016) applied similar
methods for quantifying uncertainty in predicted flow quantities.

In terms of model development, the eddy viscosity has been opti-
mised to find the β* coefficient in the −k ω-SST turbulence model that
best applies to a turbomachinery flow (Weatheritt et al., 2017b). This
was done using least-squares regression in an a priori manner that has
been previously applied many times (Muldoon and Acharya, 2006;
Spalart et al., 2015; Pichler et al., 2015). Correction parameters have
been learnt and added to the model transport equations by Parish and
Duraisamy (2016); however, these were a function of space, limiting
any a posteriori demonstration to an identical geometry. Such studies
have elicited the argument to ensure Galilean invariance in machine-
learning approaches and, when adhered to, the resulting model per-
forms better (Ling et al., 2016). Edeling et al. (2014a) have used
Bayesian methods to modify model coefficients for a full a posteriori
demonstration. This is encouraging, yet proved to be a computationally
intensive approach.

More complex regression methods, that alter more than the coeffi-
cients in the original model are possible (say adding new non-linear

terms). For example, neural networks (e.g. LeCun et al., 2015) have
been used to replace terms in the RANS equations. Ling et al. (2016)
used deep neural networks to model the Reynolds stress and whilst
showing good a priori agreement, the only a posteriori demonstration
required the matrix of Reynolds stresses at each grid point to be in-
serted into the solver — thus limiting the model to the same flow
geometry. Because of this apparent difficulty at full CFD implementa-
tion, a neural network has been used to correct a converged linear
RANS solution (Weatheritt et al., 2017a) in a similar fashion to random
forest regression (Ling et al., 2017). The primary issue with this ap-
proach is, that should the linear RANS model predict a vastly inaccurate
flow field, as with the present study, then the modified Reynolds
stresses are still a function of the incorrect velocity field. In other
words, the method is unable to alter global phenomena such as se-
paration and reattachment points, for example.

Another emerging approach to model development is via symbolic
regression, which most commonly manifests itself as a variant of ge-
netic programming (Koza, 1992). Symbolic regression aims to return a
mathematical equation that best fits some high-fidelity data, both in
terms of error and simplicity. No model is provided as a starting point
by the user and the algorithm searches the space of all mathematical
expressions. This has several advantages over other machine-learning
techniques. Primarily, the resulting equation is tangible and can be
implemented into a CFD code readily. Genetic programming is an
evolutionary algorithm (e.g. Steeb, 2014), which evolves a collection of
candidate solutions analogous to Darwin’s (1858) theory of natural
selection. Such approaches have been applied to separated
flow (Weatheritt and Sandberg, 2016c); a modified version of the ori-
ginal gene expression programming (GEP) concept of Ferreira (2001),
suitable for tensor regression, showed excellent skin friction prediction
in a posteriori demonstrations. This was achieved by optimising a non-
linear stress-strain relationship. However, the modelled time scale was
not correctly accounted for during the machine-learning phase3 and the
objective function did not account for the magnitude of the modelled
Reynolds stress. Further studies for RANS modelling have performed
well in a priori studies (Weatheritt et al., 2017a; 2017b). Note, the
framework is also being developed for hybrid RANS/LES
methods (Weatheritt and Sandberg, 2015; 2016a; 2016b).

In this work, we present an extension of our GEP evolutionary fra-
mework to account for the proper modelling of the turbulent time scale
and new objective function to account for the magnitude of the
Reynolds stress. We develop this framework with the following con-
siderations:

1. Resulting models are easy to implement into CFD codes.
2. Resulting models are Galilean invariant.
3. Demonstrate a priori success on flows similar to the high-fidelity

training database.
4. Demonstrate a posteriori success on complex flows, by solving all

transport equations from an initial condition. Hence validating ex-
actly as a conventional turbulence model would be.

5. The entire framework is computationally feasible for industrial ap-
plication.

By ensuring these points, this paper presents a major contribution to
the field of machine-learning for turbulence modelling. Above, we
identified the linear stress-strain relationship as a major contributor to
uncertainty and so we target this for improvement, effectively produ-
cing an EASM. We apply our framework to duct flows, using hybrid
RANS/LES (H-R/L) data to build new stress-strain equations. The al-
gorithm is non-deterministic, meaning for each database we produce a
class of unique models and then gain statistical information regarding
algorithm performance. The use of H-R/L shows that high-resolution

3 Although the authors argued this was unnecessary.
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