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A B S T R A C T

Passive scalar dynamics in a turbulent channel flow is studied with Direct Numerical Simulation at friction
Reynolds number =Re 160τ and Prandtl number =Pr 1. The goal of the study is to assess the grid spacing
requirement for an accurate estimation of various integral turbulent statistics, with a special focus on the scalar
dissipation rate. The implemented spatial resolutions span from the resolution comparable to the similar Direct
Numerical Simulations (DNS) studies in the past, to the very fine resolution implemented by Galantucci and
Quadrio (2010). All scalar fields are computed in parallel using a single velocity field resolved with the finest
resolution, thus reducing the statistical variability. In addition, to confidently assess the grid spacing require-
ment, we also evaluate the statistical uncertainty. The “standard” resolution of the DNS studies (resolution used
by Kim et al. (1987)) is usually sufficient for predictions of first and second-order integral turbulence scalar field
statistics. Non-negligible corrections of the fourth-order integral statistics, especially the scalar dissipation
variance profile, are observed with enhancement of the scalar resolution from the one used in the “standard”
DNS studies to the resolution recommended by Vreman and Kuerten (2014), which is roughly two times finer in
each spatial direction. Further resolution enhancements produce only marginal differences.

1. Introduction

Since the pioneering efforts of Obukhov (1968), Corrsin (1951),
Batchelor (1959) and Batchelor et al. (1959), passive scalars in turbu-
lent flows have been the focus of a number of studies. As summarized in
the review by Warhaft (2000), experiments and simulations are chal-
lenging classical descriptions of passive scalars derived from the Kol-
mogorov cascade phenomenology. Evidences suggest a strong coupling
between large and small scales and no local isotropy at inertial and
dissipation scales. They also suggest that passive scalars are associated
with a stronger intermittency compared with the velocity.

Following Batchelor (1959) and Batchelor et al. (1959), for a unit
Prandtl number as herein, the smallest spatial scale for scalar mixing is
the Kolmogorov scale =η ν( /ɛ) ,3 1/4 where ν is the dynamic viscosity and
ɛ the mean dissipation rate of the turbulent kinetic energy. Similarly,
the smallest time scale is the Kolmogorov time scale =τ ν/ɛη . As the
passive scalar is intermittent, locally, structures with a spatial (tem-
poral) span shorter than η (τη) appear in a flow. Suspecting those fine
structures to be related to highly dissipative events, a number of DNS
have been performed with sub-Kolmogorov scales resolved
(Schumacher et al., 2005; Donzis and Yeung, 2010; Galantucci and
Quadrio, 2010).

One of the central quantity in those studies is εθ, the scalar dis-
sipation rate, defined by
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where α is the thermal diffusivity. According to Pope (2013), this
quantity he calls the all-important dissipation rate matters in
combustion models. It is also a central quantity in Reynolds Averaged
Navier-Stokes (RANS) turbulence models as it appears in the budget
equation of the scalar variance. Lately, Flageul et al. (2017) showed
that the dissipation rate associated with the temperature variance is
discontinuous at the fluid-solid interface in case of conjugate heat
transfer. This is prominent for industrial applications where thermal
fatigue is a concern.

Studying homogeneous isotropic turbulence, Schumacher
et al. (2005) showed that the improved resolution matters when in-
vestigating the tails of the Probability Density Function (PDF) of εθ,
which correspond to low probability events associated with high or low
dissipation rates. More specifically, they show that a poorer resolution
has a stronger impact on regions of low εθ than on those of high εθ. On a
similar configuration, Donzis and Yeung (2010) showed accurate esti-
mation of advanced statistics (scalar dissipation intermittency
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exponent, structure functions at moderately high orders and PDF of εθ
up to 200 ɛθ) with a grid spacing equal to the Batchelor scale, which is
exactly the Kolmogorov scale in the present study.

Studying a turbulent channel flow ( = =Re Pr160, 1τ ),
Galantucci and Quadrio (2010) extended the analysis to wall-bounded
flows. They showed resolution effects on the profiles of the mean εθ and
its variance, but also on the PDF of εθ and recommended a very fine
spatial resolution ( = =+ +Δ Δ 1x z and < <+0.43 Δ 2y ). In the streamwise
(spanwise) direction, this is 6 (4) times finer than what is necessary for
the velocity according to Vreman and Kuerten (2014). The authors of
the present study estimate that the resolution proposed by Vreman and
Kuerten is sufficient for accurate predictions of the key integral tur-
bulent statistics of the passive scalar field at =Pr 1, including the
average scalar dissipation rate and its variance. The main objective of
the present paper is to assess this claim.

The structure of the paper is as follows. In the second section, the
governing equations and the computational setup are described
alongside with the procedure to estimate the sampling error. In the
third section, preliminary investigation on coarser grids is presented. In
the fourth section, the DNS results are presented. Discussion and con-
clusions are collected in the last section.

2. Governing equations, computational setup and sampling error

Dimensionless equations of the incompressible turbulent channel
flow with transport of a passive scalar can be found in various sources
(Kasagi et al., 1991; Kawamura et al., 1998):
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Eqs. (3) and (4) are normalized with the channel half width h, the
kinematic viscosity ν and the friction velocity uτ. Low friction Reynolds
number =Re 160τ and Prandtl number =Pr 1 were selected in order to
replicate the conditions of the simulations performed by Galantucci and
Quadrio (2010). As the Prandtl number is unity, Kolmogorov and
Batchelor length-scales are identical.

Periodic boundary conditions are used in the streamwise and
spanwise directions, labelled x and z, respectively, while the wall-
normal direction is labelled y. The forcing term

⎯→⎯1x represents a con-
stant pressure gradient in the streamwise direction and has a unit am-
plitude thanks to the normalization used. Boundary conditions for the
passive scalar fields at the channel walls are =θ 1 at =y 1, and = −θ 1
at = −y 1 and were previously used in the simulations of
Papavassiliou and Hanratty (1997), Johansson and Wikström (2000)
and Galantucci and Quadrio (2010).

The equations are solved with a pseudo-spectral scheme. Fourier
series are used in the x and z directions and Chebyshev polynomials are
used in the y direction. Second-order accurate time differencing
(Crank–Nicolson scheme for diffusive terms and Adams–Bashforth
scheme for other terms) is used with maximum Courant number kept
at approximately 0.1. The aliasing error is removed with computation
of the nonlinear terms on a grid 1.5 times finer in all directions.
The computer code is based on the code developed by
Gavrilakis et al. (1986), which was later modified by Lam and
Banerjee (1988). The code was used and verified in simulations of
Tiselj et al. (2001), Tiselj and Cizelj (2012) and Tiselj (2014).

The extension of the computational domain, normalized with the
channel half width h, was taken from the work of Galantucci and
Quadrio (2010): = =L L4.19, 2,x y and =L 2.09z . Both in the stream-
wise and spanwise directions, this is about 3 times smaller than the
domain used in Kasagi et al. (1991). Such a small computational

domain neglects an important part of the large scale structures in the
turbulent flow, however, it is known to be sufficient for special studies
focused on small scale turbulent structures of the velocity field
(Jiménez and Moin, 1991). The small domain offers a platform for
simplified studies of the resolution requirements. It is often overlooked
that in addition to obliterating large scale structures, small domain can
be affected by a significant sampling error. For instance, Galantucci and
Quadrio (2010) report up to 5% differences in the friction temperature
values in their simulations performed on different resolutions and
averaged over the time interval of 2400 viscous time units (statistics
based on 60 instantaneous fields).

In the present study, the resolution requirement for the passive
scalar field is examined with a single DNS run. The velocity field is
calculated on the finest grid of =Nx Ny Nz* * 360*181*180 modes (Case
6S in Table 1). Six distinct passive scalar fields are simultaneously
transported by this velocity field and resolved with different number of
modes, see Table 1. The naming scheme for the passive scalar fields is
inspired by the name of the authors who promoted certain resolution.
For instance, in 1KMM, KMM stands for Kim et al. (1987). Similarly, in
4VK, VK stands for Vreman and Kuerten (2014). The number preceding
the letters corresponds to a ranking of the grids: 1 for the coarsest, 6 for
the finest. For the five scalar fields resolved with a lower resolution, all
Fourier and Chebyshev modes above the indicated resolution are set to
zero at the end of each time step.

This approach, which is comparable to the one in
Brethouwer et al. (2003) or Gotoh et al. (2012), reduces the statistical
variability and eases the separation of the sampling error from the error
induced by a coarser spatial resolution. The separation of statistical
uncertainty and resolution effects is of particular importance for the
present work: the smaller extension of the domain in the homogeneous
directions increases the sampling error, which easily exceeds the tiny
differences induced by the variable resolution of the passive scalar field,
except for simulations with a very long duration.

The finer resolution (case 6S in Table 1) used in the wall-normal
direction follows (Vreman and Kuerten, 2014). In the streamwise and
spanwise directions, case 6S corresponds to the resolution used by
Galantucci and Quadrio (2010) in their “Medium” simulation. This is 2
to 3 times finer than the recommendation of Vreman and
Kuerten (2014). Cases 5GQM and 2GQC correspond to the “Medium”
and “Coarse” cases in Galantucci and Quadrio (2010), respectively. The
case 4VK is using the resolution recommended by Vreman and
Kuerten (2014). The case 3S is similar to 4VK except that it uses a
coarser wall-normal grid. Lastly, the resolution in case 1KMM is com-
parable with most of the previous DNS simulations (Kim et al., 1987;
Kasagi et al., 1991; Tiselj et al., 2001).

The present DNS is performed with a time step of ν u0.008 / τ
2 and one

snapshot is taken every 1000 time steps. 700 snapshots are used to
reconstruct the statistics, corresponding to an averaging time of

ν u5600 / τ
2.

DNS is widely used to produce reference data. However, as pointed
out by Oliver et al. (2014), statistics obtained from DNS contain non-
trivial errors. Errors arise mainly from the discretization of the equa-
tions and from the finite statistical sampling. As our code is based on a
pseudo-spectral method and we use a fine grid, the spatial

Table 1
Spatial resolution for the transported passive scalar fields.

Scalar field Nx*Ny*Nz +Δx
+ +[Δ , Δ ]y min y max, ,

+Δz

1KMM 40*129*60 16.8 [0.048, 3.93] 5.57
2GQC 64*129*64 10.5 [0.048, 3.93] 5.23
3S 112*129*80 5.99 [0.048, 3.93] 4.18
4VK 112*181*80 5.99 [0.024, 2.78] 4.18
5GQM 360*129*180 1.86 [0.048, 3.93] 1.86
6S 360*181*180 1.86 [0.024, 2.78] 1.86
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