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a b s t r a c t 

Transport equations for even-order structure functions are written for a passive scalar mixing fed by a 

mean scalar gradient, with a Schmidt number Sc = 1 . Direct numerical simulations (DNS), in a range of 

Reynolds numbers R λ ∈ [88, 529] are used to assess the validity of these equations, for the particular 

cases of second-and fourth-order moments. The involved terms pertain to molecular diffusion, transport, 

production, and dissipative-fluxes. The latter term, present at all scales, is equal to: i) the mean scalar 

variance dissipation rate, 〈 χ〉 , for the second-order moments transport equation; ii) non-linear corre- 

lations between χ and second-order moments of the scalar increment, for the fourth-order moments 

transport equation. 

The equations are further analysed to show that the similarity scales (i.e., variables which allow for per- 

fect collapse of the normalised terms in the equations) are, for second-order moments, fully consistent 

with Kolmogorov–Obukhov–Corrsin (KOC) theory. However, for higher-order moments, adequate similar- 

ity scales are built from 〈 χn 〉 . The similarity is tenable for the dissipative range, and the beginning of the 

scaling range. 

© 2017 Published by Elsevier Inc. 

1. Introduction 

Fully developed turbulence is characterized by a large range of 

length scales, varying from the so-called integral length scale l t , 

at which large velocity fluctuations occur on average, down to the 

smallest scale, the so-called Kolmogorov or dissipation scale η, at 

which turbulent fluctuations are dissipated. Until now, most un- 

derstanding of turbulent flows has been gained from Kolmogorov’s 

scaling theory ( Kolmogorov, 1941a, 1941b ), which was later ex- 

tended by Obukhov (1949) and Corrsin (1951) to passive scalars 

advected by a turbulent velocity field. The Kolmogorov–Obukhov–

Corrsin (hereafter, KOC) theory postulates that, under the condition 

of sufficiently high Reynolds numbers, the small scales of the flow 

decouple from the large scales. The understanding is that there 

is a steady cascade from the large scales to the smallest scales, 

where the energy transfer rate is equal to the mean energy dis- 

sipation rate 〈 ε〉 . Kolmogorov hypothesized that the small scales 

should depend only on two parameters, namely the viscosity ν and 

the mean energy dissipation 〈 ε〉 . Because only two quantities with 

different physical units are involved, this was viewed as a claim of 

universality. If the notion that the small-scale motion is universal 
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was strictly valid, then there would be realistic hope for a statisti- 

cal theory of turbulence. 

The local and non-local phenomena which are inherent to tur- 

bulent flows can be analyzed by the moments of the scalar incre- 

ment �φ, the so-called structure functions, defined by 

S p ( x , r ) = 〈 (φ( x + r ) − φ( x )) p 〉 = 〈 (�φ) p 〉 , (1) 

where r is the separation vector between the two points and the 

angular brackets denote an ensemble-average. In statistically ho- 

mogeneous turbulence, structure functions are independent of the 

position x . Yaglom (1949) presented an exact transport equation 

for the second order scalar structure function in homogeneous 

isotropic turbulence, where the separation distance r (the modu- 

lus of vector r ) is the independent variable. i.e. 

∂ 

∂t 
〈 (�φ) 2 〉 + 

∂ 

∂r i 
〈 (�u i )(�φ) 2 〉 = 2 D 

∂ 2 

∂r 2 
i 

〈 (�φ) 2 〉 − 2 〈 χ〉 , (2) 

where �u i = u i ( x + r ) − u i ( x ) denotes the velocity increment and 

D the molecular diffusivity. Eq. (2) uses Einstein’s summation con- 

vention, which implies summation over indices appearing twice. 

The mean scalar dissipation is defined as, 

〈 χ〉 = 2 D 

〈 (
∂φ

∂x i 

)2 
〉 

. (3) 
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Provided that the Reynolds number is high enough, Eq. (2) has two 

separate analytical solutions. One in the dissipative range for r → 

0, where the diffusive term and the scalar dissipation balance, i.e. 

〈 (�φ) 2 〉 = 

〈 χ〉 
6 D 

r 2 , (4) 

and one for the inertial range for η � r � l t , where the transport 

term balances the scalar dissipation, i.e. 

〈 (�u L )(�φ) 2 〉 = −2 

3 

〈 χ〉 r, (5) 

with �u L being the longitudinal velocity increment in the direction 

of r . These two results are of high significance. They are both exact 

and were derived from first-principles only under the assumptions 

of (local) isotropy and (local) homogeneity. 

The paper is devoted to the analysis of S p for p = 2 and p = 4 , 

in the context of transport equations obtained from the first prin- 

ciples, by considering a restricted number of additional hypothe- 

ses, such as self-preservation, cf. Danaila and Mydlarski (2001) . 

Section 2 describes the main characteristics of the performed di- 

rect numerical simulations (DNS), on which the analysis is based. 

In Section 3 we present the theory of generalized scalar scale- 

by-scale structure functions for any even order. Next, we develop 

in Section 4 similarity scales based on the scale-by-scale budget 

equations for the second and fourth order moments. The similar- 

ity scales are then justified by using data from DNS with different 

Taylor length-scale based Reynolds numbers between 88 and 529. 

Concluding remarks are given in Section 5 . 

2. Direct numerical simulations 

We study a passive scalar advected by a statistically homoge- 

neous isotropic and incompressible turbulent velocity field. In the 

present study, we consider a passive scalar with unity Schmidt 

number Sc = ν/D, so that the kinematic viscosity ν equals the 

molecular diffusivity D . A uniform mean gradient 
 is imposed on 

the scalar field in x 2 -direction. The mean gradient injects contin- 

uously energy into the scalar field and keeps statistics in a statis- 

tically steady state. The instantaneous scalar field can be decom- 

posed in a mean part 
x 2 and a scalar fluctuation φ, namely 

� = 
x 2 + φ . (6) 

The scalar fluctuations φ are statistically homogeneous and obey 

the equation 

∂φ

∂t 
+ u i 

∂φ

∂x i 
= D 

∂ 2 φ

∂x 2 
i 

− 
u 2 , (7) 

where t is the time, x i the spatial coordinates, and u i denote the 

velocity field. 

The three-dimensional incompressible Navier–Stokes equations 

in the vorticity formulation are solved together with Eq. (7) by a 

dealiased pseudo-spectral approach, cf. Canuto et al. (1988) . Tem- 

poral integration is carried out by a second order semi-implicit 

Adams-Bashforth/Crank–Nicolson method. The integration domain 

is a triply periodic cube with length 2 π . An external stochastic 

forcing, see Eswaran and Pope (1988) , is applied to the velocity 

field to maintain a statistically steady state. The forcing is statisti- 

cally isotropic and limited to low wave-numbers so that the small 

scales are not affected by the forcing scheme. The simulations have 

been carried out with an in-house hybrid MPI/OpenMP parallelized 

simulation code on the supercomputer JUQUEEN at research center 

Jülich, Germany. 

Characteristic parameters of the DNS are presented in Table 1 , 

where N denotes the number of grid points along one coordi- 

nate axis, Re λ the Taylor based Reynolds number, 〈 k 〉 the mean 

kinetic energy, 〈 ε〉 the mean energy dissipation, 〈 φ2 〉 the mean 

Table 1 

Summary of different DNS cases. Reynolds number variation between Re λ = 

88 and Re λ = 529 . 

R0 R1 R2 R3 R4 R5 

N 512 3 1024 3 1024 3 2048 3 2048 3 4096 3 

Re λ 88 119 184 215 331 529 

ν 0.01 0.0055 0.0025 0.0019 0.0010 0.0 0 048 

〈 k 〉 11.15 11.20 11.42 12.70 14.35 23.95 

〈 ε〉 10.78 10.52 10.30 11.87 12.55 28.51 

〈 φ2 〉 1.95 1.89 1.94 2.47 2.25 2.41 

〈 χ〉 3.92 3.90 4.01 5.00 4.76 6.78 

−2
〈 u 2 φ〉 3.93 3.98 4.03 4.95 4.79 5.76 

t avg / τ 100 30 30 10 10 2 

M 189 62 61 10 10 6 

κmax η 3.93 4.99 2.93 4.41 2.53 2.95 

scalar variance, 〈 χ〉 the mean scalar dissipation, and 〈 u 2 φ〉 the 

mean scalar flux. The production of scalar variance is −2 〈 u 2 φ〉 
. 

Ensemble-averages are denoted by angular brackets and are com- 

puted over the whole computational domain due to homogeneity 

and over a time frame t avg due to stationarity. The number of an- 

alyzed ensembles is in the range between M = 6 for case R5 up to 

M = 189 for case R0. Resolving the smallest scales by the numer- 

ical grid is important for the accuracy of the DNS. To ensure an 

appropriate resolution of the smallest scales, the number of grid 

points has been increased to as high as 4096 × 4096 × 4096 for 

case R5. Following Ishihara et al. (2007) and Donzis et al. (2005) , 

a resolution condition of κmax η > 2 . 5 is maintained for all cases 

to accurately compute high-order statistics. Here, κmax denotes the 

highest resolved wavenumber and η = ν3 / 4 〈 ε〉 −1 / 4 denotes the Kol- 

mogorov length scale. Further details about the DNS are presented 

by Gauding et al. (2015) and Peters et al. (2016) . 

3. Scale-by-scale transport equations for even order structure 

functions 

Starting from Eq. (7) , a transport equation for the even mo- 

ments of the scalar increment can be derived by using a similar 

procedure as presented in Danaila et al. (1999) and Hill (2001) . For 

homogeneous turbulence this equation reads 

∂ 

∂t 

〈
(�φ) 2 n 

〉
( r ) + 

∂ 

∂r i 

〈
(�u i )(�φ) 2 n 

〉
( r ) ︸ ︷︷ ︸ 

−T r 2 n 

+ 2 n 

〈
(�u 2 )(�φ) 2 n −1 

〉
( r ) ︸ ︷︷ ︸ 

−Pr 2 n 

= J 2 n ( r ) , (8) 

where J 2 n are the molecular-diffusion terms, i.e. 

J 2 n ( r ) = nD 

〈
(�φ) n −1 

[
∂ 2 (�φ) 

∂x ′ 2 
i 

+ 

∂ 2 (�φ) 

∂x 2 
i 

]〉
. (9) 

The term J 2 n is a function of r and remains finite even when D 

tends to zero. Eq. (8) is exact, which means that it is derived from 

the governing equations without any approximation beside of in- 

compressibility and homogeneity. It is convenient to decompose 

J 2 n ( r ) by partial integration, i.e. 

J 2 n ( r ) = 2 D 

∂ 2 

∂r 2 
i 

〈 (�φ) 2 n 〉 ︸ ︷︷ ︸ 
D 2 n 

− n (2 n − 1) 〈 (�φ) 2 n −2 ( χ( x ) + χ( x + r ) ) 〉 ︸ ︷︷ ︸ 
E 2 n 

. (10) 

The terms of Eqs. (8) and (10) can be physically interpreted. 

The first term on the left-hand side is the temporal change of 

the moments of the scalar increment. The second term Tr 2 n is a 
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