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a b s t r a c t 

The characteristics of the dissipation of the turbulent kinetic energy in wall-bounded flows are revisited 

through direct numerical simulations of turbulent channel flows realized in large computational domains 

up to the Reynolds number R e τ = 

h ̄u τ
ν =1100 where ū τ is the friction velocity, ν and h stands for the kine- 

matic viscosity and channel half width. It is shown that the local homogeneity assumption is acceptable 

in the whole layer, while the local isotropy is valid only in the far meso-layer and near the centerline. 

The mean dissipation in inner scale is Reynolds number dependent in the low-buffer and viscous sub- 

layers. This is due to the local shear layers induced by the outer-layer irrotational eddies. A conceptual 

model is subsequently proposed to link the near wall dissipation to the large-scale structures. The dissi- 

pation statistics conditioned by fixed amplitudes of the velocity field are also analyzed in order to clarify 

whether the zero-crossings of the fluctuating velocity components contribute most to the energy dissi- 

pation or not. Incidentally, the occurrence of the Eulerian stagnation points is questioned. The largest 

contribution to the dissipation in the viscous sublayer comes from the level-crossings of the wall normal 

velocity v component in the spanwise direction, that peaks to 30% when v = 0 . The spanwise direction 

is the most active in terms of the level-crossing frequencies that are inversely proportional to the corre- 

sponding Taylor scales. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

It is compulsory to conduct a detailed investigation of the dis- 

sipation ɛ K of the turbulent kinetic energy in wall- bounded flows 

to improve the turbulence models. The structural complexity of 

the wall turbulence is coupled with that of the small-scale struc- 

tures in the direct vicinity of the wall. The fine scale-turbulence 

is affected by the large-scale inactive motions in the viscous and 

low buffer sublayers, leading to the Reynolds number dependence 

of ɛ K in this region ( Bradshaw 1967 ; Hoyas and Jiménez 2008 ; 

Mathis et al., 2013 ). The way the large-scales and the finer-scales 

coupling takes place is one of the most interesting enigmas of the 

wall turbulence. 

Hunt et al. (1987), Hunt and Carruthers (1990) and Hunt and 

Morrison (20 0 0) argue that the rate of dissipation is controlled by 

the steepest gradient of the energy containing eddies and should 

therefore be related to the smallest integral scale. They show that 

the smallest macro-scale is the integral scale L (x ) 
vv of the wall 

normal velocity v in the streamwise x direction in a turbulent 

flow with slight shear (SS). They further suppose that L (x ) 
vv is ap- 

proximately equal to the dissipation length scale L ε K defined as 

L (x ) 
vv ≈ L ε K ≡ v 2 

3 / 2 

ε K 
. According to these authors, the dissipation of the 
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kinetic energy ɛ K is then approximately invariant with the wall 

normal distance y and the turbulent intensity v 2 depends on ɛ K 
and y , which, when subjected to dimensional analysis, gives us 

v 2 = Cε 2 / 3 
K 

y 2 / 3 . The dissipation length scale with SS is therefore a 

function of v 2 and ɛ K leading to L −1 
ε K 

≡ ε K 

( v 2 ) 
3 / 2 

≡C −3 / 2 y −1 = A y −1 . However, 

in a turbulent flow with constant shear without the presence of a 

wall, L ε K depends on v 2 and on the mean shear i.e. L −1 
ε K 

≡ A 

′ d ̄U /dy 

v 2 
. 

The dissipation ɛ K is due to the deformation of the small struc- 

tures by the larger ones, and is controlled by the significant gra- 

dients of the structures containing the energy. However, ε K ∝ L −1 
ε K 

, 

and consequently the length scale L ε K near to a real wall depends 

on the less dominant of the two effects – i.e. on the wall or the 

shear. Hunt and Morrison (20 0 0) therefore propose to consider 

the harmonic mean of the two expressions L −1 
ε K 

≡ A y −1 + A 

′ d ̄U /dy 

v 2 
. 

This form was evaluated in the analysis based on the rapid distor- 

tion theory performed Lee and Hunt (1989) . This expression corre- 

sponds relatively closely to the DNS data at the start of the outer 

layer and with low Reynolds numbers, but is not valid next to the 

wall in the low buffer and viscous sublayers. 

Antonia et al. (1991) analyzed the turbulent channel direct nu- 

merical simulations data at two low Reynolds numbers R e τ = h + = 

h ̄u τ
ν = 180 and 395 to provide approximate estimations of the ki- 

netic energy dissipation in a wall bounded turbulent flow. Here h is 

the half-channel width and () + denotes the variables scaled by the 
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kinematic viscosity ν and the shear velocity ū τ hereafter. These au- 

thors compared the homogeneous, axisymmetric and isotropic ap- 

proximations with the real dissipation distribution across the chan- 

nel and analyzed the asymptotic behavior of ɛ K at the wall. Their 

analysis has shown inter alia, that the wall turbulence can be con- 

sidered locally homogeneous and isotropic only in the far meso- 

layer and not in the inner layer. 

The kinetic energy dissipation reaches its maximum at the 

wall. Moreover, the Reynolds number dependence of ɛ K is con- 

centrated in the low buffer layer and the influence of the 

large-scale passive eddies on ɛ K is accentuated mainly in the 

viscous sublayer ( Hoyas and Jiménez, 2008 ). Some time ago, 

Bradshaw (1967) evoked the possibility that the large-scale irro- 

tational eddies can effect the small-scale structures (dissipation) 

near the wall. The passive structures do not contain vorticity but 

play the role of outer potential flow. They create local Rayleigh- 

Stokes shear layers concentrated below the buffer layer and ex- 

tending over several outer length scale in the streamwise direction. 

One of the components of the dissipation at the wall is directly 

related to the turbulent intensity of the wall shear stress that is 

known to increase slightly with ln ( Re τ ). Mathis et al. (2013) have 

shown that the large-scale motions (LSM) induce an amplitude 

modulation in the instantaneous wall shear stress fluctuations in 

a way similar to the amplitude modulation felt in the streamwise 

velocity fluctuations in the buffer layer ( Mathis et al., 2009; Maru- 

sic et al., 2010 ). 

Kailasnath and Sreenivasan (1993) claim that “the zeros of the 

velocity signal constitute a part of turbulence dynamics that con- 

tributes most to the energy dissipation but nothing at all to the 

Reynolds stress ». It is well established by now that the Liepmann 

scale based on the zero-crossing frequency of u and the Taylor 

scale related to ( ∂u / ∂x ) 2 coincide well in wall bounded flows 

( Sreenivasan et al., 1983 ; Tardu and Bauer, 2015; Tardu 2016 ) How- 

ever, this coincidence does obviously not imply that the dissipation 

is locally important during the zero-crossings, and this point has 

not been entirely elucidated. 

The aim of this paper is to revisit some of these aspects through 

the direct numerical simulations (DNS) up to R e τ = 1100 realized 

in large computational domains of a fully developed turbulent 

channel flow. The DNS are briefly detailed in the next section. The 

validity of the dissipation estimation through local homogeneity, 

axisymmetry, and local isotropy is subsequently questioned. The 

effect of the large-scale irrotational eddies on the fine scale tur- 

bulence next to the wall is analyzed through a conceptual model. 

Finally, the conditional contributions to the dissipation of fixed 

magnitudes of fluctuating velocity components are discussed and 

different aspects related to this topic are clarified. 

2. Direct numerical simulations 

Direct numerical simulations (DNS) of four fully developed tur- 

bulent channel flows have been performed at Re τ = 180, 395, 590 

and 1100 in particularly large computational domains similarly to 

Hoyas and Jiménez (2008) . Periodical boundary conditions are used 

in the homogeneous streamwise x and spanwise z directions. The 

mesh nodes are distributed uniformly along x and z , and refined 

near the wall in the wall- normal y direction. The mesh size �y is 

set to one third of the Kolmogorov scale η near the wall while �y 

≈ η at the centerline. The time integration is performed accord- 

ing to a fractional step approach in which convective and diffusive 

terms are integrated by a three- stage and third-order low stor- 

age Runga-Kutta scheme. High accuracy fourth order optimized ex- 

plicit schemes using a five-point stencil are used in order to reach 

spectral-like accuracy. Details can be found in Bauer et al. (2015) . 

The Table 1 recapitulates the simulation characteristics. It is seen 

that the streamwise and spanwise lengths of the computational 

domain varies respectively from L x = 38 h to 25 h , and L z = 13 h to 

9 h . They are taken particularly large to depict the effect of large- 

scale outer structures, if any. 

The time span used for the statistics is denoted by T in 

Table 1 and it is also comparable to that used by Hoyas and 

Jiménez (2008) . These authors use short-term averages for the sta- 

tistical quantities, whereas the procedure chosen here is some- 

what different. We first compute the statistical quantities in the 

homogeneous planes of 10 independent fields. Two fields are con- 

sidered as independent if they are separated by a time T p larger 

than the time required for a particle at the channel center to 

cross the length of the computational domain in the streamwise 

direction, i.e. T p ≥ L x 
Ū c 

. This means there is at least one large eddy 

turnover time between two consecutive samples to avoid the inter- 

ference between the buffer layer coherent structures. Ten indepen- 

dent flow fields yield a total sample of more than 6 × 10 7 points 

for R e τ = 1100 at a given y + plane and lead to satisfactory statis- 

tical convergence. Note that the criteria of the statistical indepen- 

dence used, is very strict, as most of the wall structures evaluate 

significantly in time and space within a time period smaller than 

L x 
Ū c 

. Thus, the number of flow fields was increased from ten to N F 

within the time span T (last column of Table 1 ) and their statistical 

independence was checked. 

All of the major turbulence statistics compare perfectly well 

with published data obtained by pseudo-spectral DNS of the evolu- 

tion problem for the wall-normal vorticity and the Laplacian of the 

wall-normal velocity. The DNS data presented here have already 

been used to analyze different aspects of the wall turbulence in 

Tardu and Bauer (2015, 2016 ) and Tardu (2016, 2017 ). 

Table 1 

Simulations parameters in the streamwise, wall-normal and spanwise directions ( x, y, z ). The second col- 

umn gives the number of computational modes in respectively x, y , and z directions. The resolution in the 

streamwise, wall-normal and spanwise directions in wall units are provided in columns three to five. Both 

smallest (first line) and largest (second line) grid spacing are given for wall- normal direction. The number 

in parenthesis is the wall-normal grid spacing scaled by Kolmogorov length η in the fourth column; L x and 

L z correspond respectively to the size of the computational domain along x and z; T , and N F are respectively 

the time span and the number of flow fields used to compute the statistics. 

Re τ N x × N y × N z �x + �y + �z + L x 
h 

L z 
h 

T ̄U c 
L x 

T ̄u τ
h 

N F 

180 771 × 129 × 387 8.80 0.49 (0.31 η) 

5.59 (1.52 η) 

5.84 12 π 4 π 18 40 64 

395 1691 × 283 × 849 8.81 0.48 (0.33 η) 

5.57 (1.26 η) 

5.85 12 π 4 π 12 25 51 

590 1651 × 423 × 1113 8.98 0.48 (0.34 η) 

5.56 (1.15 η) 

5.00 8 π 3 π 16 19 24 

1100 3079 × 789 × 2075 8.98 0.48 (0.34 η) 

5.55 (0.98 η) 

5.00 8 π 3 π 11 13 16 
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