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a b s t r a c t 

Taylor’s theory of dispersion was extended to produce estimates of the far–field growth rate of the plume 

of a passive scalar in grid turbulence (GT) and in uniformly sheared flow (USF), both of which evolve 

in the streamwise direction. Expressions for the evolution of the plume width relative to the integral 

length scale of turbulence were also derived. The predictions of plume growth rate were tested against 

available data in both of these types of flows and were found to be accurate in an extensive region of 

USF and compatible with an extrapolated trend in GT, in which the available data did not extend very far 

from the scalar source. Although in both cases the measured half-width of the plume was comparable in 

magnitude to the streamwise integral length scale of the turbulence, the far–field approximation seemed 

to hold. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

An admixture released from a concentrated source into a car- 

rier fluid is mixed with its surroundings by molecular motions at 

a mixing rate that is proportional to the molecular diffusivity of 

the system. Nevertheless, molecular diffusion is greatly enhanced 

by turbulent motions, because turbulence increases drastically the 

interfacial area between regions of fluid with different concentra- 

tions. 1 Very close to the source, diffusion is only affected by molec- 

ular actions, irrespectively of whether the flow is laminar or turbu- 

lent, but, away from it, turbulent diffusion is overwhelmingly more 

effective than molecular diffusion. In his seminal work on turbu- 

lent diffusion, Taylor (1922) computed the rate of dispersion of 

fluid particles in one-dimensional, zero-mean, stationary and ho- 

mogeneous turbulence. First he expressed the variance of the par- 

ticle displacement X at time t following its release in terms of the 

Lagrangian velocity variance 〈 v 2 〉 (angle brackets denote ensemble 

averaging) and the Lagrangian velocity auto-correlation coefficient 

R ( ξ ) as 

〈 X 

2 (t) 〉 = 2 〈 v 2 〉 
∫ t 

0 

(t − ξ ) R (ξ ) dξ . (1) 

He further distinguished between dispersion at relatively short 

times, when R ( ξ ) ≈ 1, and dispersion at relatively long times, when 
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1 The following discussion also applies to changes of temperature of packets of 

fluid released into cooler or warmer bulk fluid, in which case the molecular diffu- 

sivity should be substituted by the thermal diffusivity. 

R ( ξ ) ≈ 0. The interest of our work focuses on long-time diffusion 

and so the remainder of this article will deal only with this regime. 

Taylor’s theory leads directly to an asymptotic expression for long- 

time particle dispersion as 

1 

2 

d〈 X 

2 (t) 〉 
dt 

≈ 〈 v 2 〉 T , t � T , (2) 

where the Lagrangian integral time scale is defined as T = ∫ ∞ 

0 R (ξ ) dξ and the product D = 〈 v 2 〉 T is known as the turbulent 

diffusivity . Taylor’s analysis was one-dimensional, but its extension 

to three-dimensional homogeneous turbulence is straightforward 

( Batchelor, 1949 ). For convenience in estimating diffusion proper- 

ties from measurements in approximately stationary and homoge- 

neous turbulence, one may replace ensemble averages by time av- 

erages. One may also estimate the Lagrangian velocity variance and 

the Lagrangian time scale from the Eulerian velocity standard de- 

viation u ′ and the Eulerian integral length scale L ( Corrsin, 1975 ) 

as 〈 v 2 〉 ≈ u ′ 2 and T ≈ L/u ′ . Then, the turbulent diffusivity may be 

also be approximated as D ≈ u ′ L . 
Taylor’s theory of dispersion has also been adapted to the de- 

scription of turbulent diffusion of a passive scalar injected from 

a point or line source in stationary and homogeneous turbulence 

that is convected by a mean stream with a uniform velocity U 1 

(overbars denote time averaging) ( Arya, 1999 ). For a point source, 

or a line source aligned with the x 3 axis, one may ascertain that 

the far–field plume would have a Gaussian-shaped mean profile 

(see Fig. 1 for a sketch) with a half–width 

σ ≈
(
2 u 

′ 
2 L 22 , 2 �x 1 / U 1 

)1 / 2 
, σ � L 22 , 2 , (3) 
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Fig. 1. Sketch of a passive scalar plume released from a discrete source in unidirec- 

tional, stationary and homogeneous turbulent flow. 

where �x 1 is the streamwise distance from the source, u ′ 2 is the 

standard deviation of the transverse velocity fluctuations and L 22,2 

is the transverse integral length scale of the transverse velocity 

fluctuations. 

Estimating the width of scalar plumes is of great practical im- 

portance in many environmental and industrial applications and 

the use of a simple equation like (3) would be an attractive ap- 

proach, provided of course that it is sufficiently accurate. As men- 

tioned previously, this relationship applies strictly to the far fields 

of stationary and homogeneous turbulence, and no turbulent flow, 

even among those generated in the laboratory, meets exactly such 

conditions. It seems, therefore, worthwhile to seek types of turbu- 

lence that meet approximately the conditions for the validity of Eq. 

(3) and so would be possible candidates for an extension of Tay- 

lor’s theory. To distinguish such extensions from Taylor’s original 

theory of dispersion, we will hereafter denote them by the term 

Taylorian diffusion . To qualify for this name, a Taylorian diffusion 

analysis must be based on two main conditions: first, the inhomo- 

geneity of the turbulence must be sufficiently mild (“homogeneity 

condition”) and, second, the plume width must be large compared 

to the local integral length scale (“far-field condition”). The far- 

field condition can be readily verified from experimental data. One 

way to ensure that the homogeneity condition is satisfied would 

be to confirm that changes in turbulent kinetic energy and integral 

length scale over a streamwise or transverse distance that is equal 

to the local length scale are small by comparison to the values of 

the corresponding properties, spatially averaged over the same dis- 

tance. In such cases, one may argue that Eq. (3) would still lead to 

an estimate of plume width in terms of the streamwise distance 

�x 1 , provided that the local values of u ′ 
2 

and L 22,2 are permitted 

to evolve, rather than being fixed, as in Taylor’s theory. Thus, the 

problem of estimating a Taylorian plume width would be reduced 

to finding suitable expressions for the evolutions of these proper- 

ties. 

The most promising Taylorian diffusion candidates seem to be 

canonical flows that evolve in a self-similar manner far away from 

their origin. In such flows, one may use the turbulent kinetic en- 

ergy k as a surrogate for u ′ 2 
2 

and the streamwise integral length 

scale L 11, 1 as a surrogate for L 22,2 , because L 11, 1 is the only one 

reported in most cases by experimentalists. k can be expressed as 

a function of streamwise distance, either empirically or by solving 

the simplified turbulent kinetic energy equation. The latter equa- 

tion may be also used to derive a corresponding expression for the 

turbulent kinetic energy dissipation rate ε. Unfortunately, there is 

no independent analytical way to determine the streamwise evolu- 

tion of the integral length scale; a common approach is to estimate 

it by assuming constancy of the dissipation parameter ( Taylor, 1935 ) 

C ε = 

εL 11 , 1 

(2 k/ 3) 
3 / 2 

≈ const . (4) 

It has been amply demonstrated ( Vassilicos, 2015; Nedi ́c and 

Tavoularis, 2016b; 2016a; Nedi ́c et al., 2017 ) that (4) holds in far 

downstream regions of several canonical flows and so its range 

of validity is likely to overlap with the Taylorian far-field condi- 

tion. There is also growing evidence that several canonical flows 

have extensive upstream regions in which (4) is not valid ( Nedi ́c 

et al., 2013; Dairay et al., 2015; Vassilicos, 2015; Goto and Vas- 

silicos, 2015; Obligado et al., 2016; Nedi ́c and Tavoularis, 2016b; 

Goto and Vassilicos, 2016; Nedi ́c and Tavoularis, 2016a; Nedi ́c et al., 

2017 ), and, in some cases, also intermediate regions where the dis- 

sipation parameter may be described as a power function of the lo- 

cal turbulence Reynolds number Re λ = λ(2 k/ 3) 1 / 2 /ν ( λ is the Tay- 

lor microscale and ν is the kinematic viscosity of the fluid), namely 

as 

C ε ∝ Re αλ . (5) 

It is obvious that (4) is a special case of (5) , corresponding to 

α = 0 . For a particular turbulent flow to have a Taylorian diffu- 

sion region, it must satisfy the two Taylorian conditions. Turbulent 

boundary layers and free shear flows (wakes, jets and mixing lay- 

ers) have integral length scales that are comparable to their width 

and so a plume width would never satisfy the far-field condition 

in such flows. This leaves flows which are (ideally) unbounded as 

only possible Taylorian candidates. The only two such flows that 

are known to exist are grid-generated, nearly isotropic turbulence 

(GT) and uniformly sheared, highly anisotropic turbulence (USF). 

Away from their origins, both GT and USF are approximately homo- 

geneous on transverse planes but inhomogeneous in the stream- 

wise direction, although mildly so. They are also known to have 

extensive self-similar regions. In Section 2 we will derive theoreti- 

cal predictions of Taylorian plume widths in these two flows and 

in Section 3 we will test these predictions against available experi- 

mental results. 

2. Predictions of Taylorian diffusion analysis 

2.1. Decaying grid turbulence 

Sufficiently far downstream of a grid, the turbulence would es- 

sentially be transversely homogeneous and the turbulent kinetic 

energy would decay as 

k ∝ (x 1 − x 10 ) 
−m , (6) 

where the origin of the coordinate system is fixed on the grid and 

x 10 is the location of an empirical effective origin. Far downstream 

of the grid, turbulence production by mean shear would be negli- 

gible and the turbulent kinetic energy equation may be simplified 

to 0 . 5 U 1 ( dk / dx 1 ) ≈ −ε from which one may also derive a dissipa- 

tion decay law as 

ε ∝ (x 1 − x 10 ) 
−(m +1) 

. (7) 

Considering that the Taylor microscale λ is defined in terms of k 

and ε as ε = 10 νk/λ2 , it is easy to show that 

λ ∝ (x 1 − x 10 ) 
1 / 2 

, (8) 

from which one may also derive power laws for the turbulent 

Reynolds number as 

Re λ ∝ λk 1 / 2 ∝ (x 1 − x 10 ) 
(1 −m ) / 2 (9) 

and for the dissipation parameter as 

C ε ∝ (x 1 − x 10 ) 
α(1 −m ) / 2 . (10) 

Finally, combining (4), (6) and (7) , one may derive a power law for 

the integral length scale as 

L 11 , 1 ∝ C ε (x 1 − x 10 ) 
(2 −m ) / 2 ∝ (x 1 − x 10 ) 

(2 −m ) / 2+ α(1 −m ) / 2 . (11) 

When attempting to predict plume growth in decaying turbu- 

lence, one needs to overcome an obvious contradiction. The de- 

cay law is referenced to a distance from an effective origin at x 10 , 
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