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a b s t r a c t

The deformation dynamics of a compound liquid droplet in shear flow is numerically investigated in two-
and three-dimensional space. The computational model is based on the immersed boundary method. This
accurately and efficiently tracks the interfaces of immiscible multi-phase fluids. We extend a recently
developed volume-conserving immersed boundary method for two-phase fluid flow to ternary com-
pound droplet flows. For long time simulations, we also apply a surface remeshing algorithm. Chorin’s
projection method is employed, and the resulting system of discrete equations is solved by a multigrid
technique. We study the effects of radius, interfacial tension ratios, and inner droplet location on the
deformation of a compound droplet, and compute the inclination angles of inner and outer droplets.
Simulation results indicate that the angle of the inner droplet is always greater than or equal to that
of the outer one. The effect of wall confinement on compound droplet deformation is compared with that
of a simple droplet. The result shows that the more confined the wall is, the more different the compound
and simple droplets’ behavior.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of multiphase droplets is of great interest in
many fields of science and technology. The hydrodynamics of
simple droplets and blends under various flow conditions has been
intensively investigated from theoretical (Hinch and Acrivos, 1980;
Taylor, 1934), computational (Renardy and Cristini, 2001; Renardy,
2007; Janssen and Anderson, 2007; Vananroye et al., 2008; Yue
et al., 2004, 2006; Pillapakkam and Singh, 2001; Sheth and
Pozrikidis, 1995; Hua et al., 2013), and experimental (Rumscheidt
and Mason, 1961; Torza et al., 1972; Bartok and Mason, 1959) per-
spectives. The growing interest in the generation and manipulation
of compound droplets is mainly due to microfluidic applications
(Utada et al., 2005; Chen et al., 2007; Hirofumi et al., 2007). For
example, Utada et al. (2005) fabricated double emulsions that
contained a single internal droplet in a core–shell geometry using
a microcapillary device.

Johnson and Sadhal (1985) reviewed the fluid mechanics of
compound multiphase droplets in the static state and their trans-
lation in quiescent flow. The behavior of double emulsion droplets
in extensional flows was analytically studied in (Stone and Leal,

1990), and Bazhlekov et al. (1995) numerically studied the
unsteady motion of a rising compound droplet in a viscous fluid
under the effect of gravity using the finite element method.
Smith et al. (2004) investigated the deformation and breakup of
an encapsulated droplet in shear flow using the level set method.
They focused on the recovery behavior of an equiviscous
compound droplet, and presented a phase diagram to describe
the morphologies for a range of capillary numbers and surface
tensions. As a first step to develop a model for the deposition of
a cell-encapsulating droplet, Tasoglu et al. (2010) studied the
impact and spreading of a compound viscous droplet on a flat
surface using the front-tracking method. Gao and Feng (2011)
developed a diffuse-interface method to simulate the spreading
and breakup of a compound drop on a partially wetting substrate.
They observed three regimes for the interfacial behavior, mainly
depending on the size of the inner droplet. Recently, Qu and
Wang (2012) studied the hydrodynamics of concentric and eccen-
tric compound droplets in extensional flows using the spectral
boundary element method. They explored parameter effects in
detail, including the relative size and surface tension of two
interfaces, the capillary number, and the initial location of an inner
droplet in the compound droplet, on the deformation and stability
of the compound droplet in the Stokes flow regime. There are
several experimental (Vananroye et al., 2007; Sibillo et al., 2006)
and numerical (Renardy, 2007; Janssen and Anderson, 2007;
Vananroye et al., 2008) results for the confinement effect on the
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steady-state shape of a simple droplet under shear flow. The phe-
nomenological models make an important contribution to our
comprehension of the deformation and breakup of a single droplet
(Minale, 2008, 2010). However, there are no numerical results for
the wall effect with respect to a compound droplet.

The novel contributions of this study are as follows: (i) we
extend the three-dimensional volume-conserving immersed
boundary method and apply surface remeshing for a compound
droplet; (ii) the influence of fluid properties, droplet size, and inner
droplet location are investigated; and (iii) the wall confinement
effect is also studied and compared with a simple droplet. The rest
of the paper is organized as follows. In Section 2, the mathematical
governing equations are introduced. In Section 3, we describe the
numerical implementation in detail. The results of numerical sim-
ulations are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2. Governing equations

We study the two- and three-dimensional dynamics of a com-
pound liquid droplet suspended in an ambient fluid between two
parallel plates under a shear flow with shear rate _c, as schemati-
cally illustrated in Fig. 1. The domains X1; X2, and X3 represent
the inner, outer, and ambient fluids, respectively, and Cm denotes
the interface between fluids Xm and Xmþ1 ðm ¼ 1;2Þ. rm is the sur-
face tension coefficient on Cm, and qm and lm are density and vis-
cosity, respectively, in Xm. For simplicity, we consider constant
density and viscosity.

In each fluid, the Navier–Stokes and continuity equations are
satisfied

qm
@um

@t
þ um � rum

� �
¼ �rpm þ lmDum; for m ¼ 1;2;3; ð1Þ

r � um ¼ 0; ð2Þ

where um ¼ umðx; tÞ is the fluid velocity and pm ¼ pmðx; tÞ is the
pressure field, defined for the Cartesian coordinate x 2 Xm at time
t. The velocity is continuous across the droplet interface Cm, and
the normal stress jump is balanced by the interfacial force fm, i.e.,
½�pInm þ lrunm�Cm

þ fm ¼ 0, where nm is the unit normal vector
on Cm. However, it is not easy to solve Eqs. (1) and (2) directly with
jump conditions at the interfaces. To overcome these difficulties, we
use the immersed boundary method (IBM), which was developed
by Peskin (1977). In IBM, we treat the interface as an immersed
boundary that exerts a force f on the fluids and moves with the local
fluid velocity (Lai et al., 2008).

We denote by XmðtÞ the Lagrangian variable for the immersed
boundary Cm;m ¼ 1;2. The fluid flow is computed in the whole
domain, and then XmðtÞ is moved according to the interpolated
fluid velocity. The fluid interacts with the interface through the
surface tension force exerted by the boundary. This surface tension
force is spread to the surrounding Eulerian variable x using a delta
function. Then, the dimensionless equations of motion for the sys-
tem of immiscible three-phase fluid flow can be written in the fol-
lowing form:

@uðx; tÞ
@t

þ uðx; tÞ � ruðx; tÞ ¼ �rpðx; tÞ þ 1
Re

Duðx; tÞ þ fðx; tÞ; ð3Þ

r � uðx; tÞ ¼ 0; ð4Þ

fðx; tÞ ¼
X2

m¼1

1
Wem

fmðx; tÞ; ð5Þ

fmðx; tÞ ¼
Z

Cm

FmðXmðtÞÞdðx� XmðtÞÞds; ð6Þ

dXmðtÞ
dt

¼ UmðXmðtÞÞ for m ¼ 1;2; ð7Þ

UmðXmðtÞÞ ¼
Z

X
uðx; tÞdðx� XmðtÞÞdx: ð8Þ

Here, uðx; tÞ; pðx; tÞ; fmðx; tÞ are Eulerian variables and
FmðXmðtÞÞ; UmðXmðtÞÞ are Lagrangian variables in the Cartesian
domain X � Rd (d = 2 or 3). The Lagrangian force density is defined
as FmðXmðtÞÞ ¼ jmðXmðtÞÞnmðXmðtÞÞ, where jm is the mean curva-
ture and nm is the unit outward normal vector at the interface
Cm. dðxÞ is the Dirac delta function defined as the product of
one-dimensional Dirac delta functions, i.e., dðxÞ ¼ dðxÞdðyÞ and
dðxÞ ¼ dðxÞdðyÞdðzÞ in two and three dimensions, respectively.

Let R1 and R2 be the undeformed radii of the inner and outer
droplets, respectively. The length scale is R2. 1= _c is the time scale,
where _c is the shear rate. Thus, _cR2 is the velocity scale. We now
define the capillary numbers Cam ¼ l3 _cRm=rm for the inner
(m ¼ 1) and outer (m ¼ 2) droplets. Other dimensionless parame-
ters are the Reynolds number Re ¼ q3 _cR2

2=l3 and the interface-
specific Weber numbers Wem ¼ CamRe. For the computational
domains, we use X ¼ ð�Lx; LxÞ � ð�Ly; LyÞ and X ¼ ð�Lx; LxÞ�
ð�Ly; LyÞ � ð�Lz; LzÞ for two- and three-dimensional spaces, respec-
tively. The initial conditions are ðu;vÞ ¼ ðy; 0Þ and ðu;v ;wÞ
¼ ðz;0;0Þ. The boundary conditions are uðx; LyÞ ¼ �uðx;�LyÞ ¼ Ly;

vðx; LyÞ ¼ vðx;�LyÞ ¼ 0, and uðx; y; LzÞ¼ �uðx; y;�LzÞ ¼ Lz, vðx; y; LzÞ
¼ vðx; y;�LzÞ ¼ wðx; y; LzÞ ¼ wðx; y;�LzÞ ¼ 0. For the pressure field,
we take the homogeneous Neumann boundary condition at the
top and bottom plates. In the other directions, we use periodic
boundary conditions.

3. Numerical solution

In this section, we briefly describe the numerical solutions for
IBM in three dimensions. Volume-conserving and remeshing algo-
rithms are used to preserve the mass of the droplet and maintain a
high-quality surface mesh.

3.1. Discretization

We discretize the domain X ¼ ð�Lx; LxÞ � ð�Ly; LyÞ � ð�Lz; LzÞ in
three-dimensional space. Two-dimensional discretization is analo-
gously defined. Let the computational domain be partitioned into a
uniform mesh with a space step of size h in a Cartesian geometry.
The center of each cell is located at xijk ¼ ðxi; yj; zkÞ, whereFig. 1. Compound droplet in an ambient fluid under shear flow.
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