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a b s t r a c t

Vane type geometries are often used in rheometers to avoid slippage between the sample and the solid
boundaries. Thus in commercial firms, universities and research institutes, vane type geometries are
often applied to obtain accurate isothermal flow parameters. Recently, a detailed analysis of the complex
flow phenomena inside such device was made using the finite element method (Nazari et al., 2013). In
particular, the shaft torque was calculated at different angular velocities and compared to experimental
data. Here, this work is repeated by using the finite volume method. In addition to this, the effect of
hydrodynamic pressure on the shaft torque is analyzed separately and compared to the effect generated
by viscous stress. This analysis is done for the two Newtonian fluids reported in Nazari et al. (2013), as
well as for two cases of viscoplastic Bingham fluids. Including this, mesh independence is also analyzed.
The outcome of the overall analysis is that the effect of hydrodynamic pressure constitutes about 2/3 of
the shaft torque, leaving only about 1/3 of the torque to viscous stress.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

As reported in Nazari et al. (2013), the vane rheometer consists
of an impeller (the rotor) rotating in a baffles-cylinder geometry
(the stator). The objective of this geometrical configuration is to
eliminate slip between the sample and the solid boundaries of
the rheometer (Nazari et al., 2013). However, with rotation, the
impeller’s vane blades will both push and drag the fluid, resulting
in non-uniform hydrodynamic pressure exerted on the blades.
Thus, in addition to the viscous shear stress, this pressure will
influence the measured torque registered by the rheometer (i.e.
influence the shaft torque). As such, the main question becomes:
How significant is this influence? Is there a direct relationship
between the output of the vane rheometer and the fluid shear
viscosity g, or will the effect of hydrodynamic pressure distort or
damage this relationship? Or more to the point, can the results
of the vane rheometer be trusted to give an accurate information
about the fluid shear viscosity? The main objective of the current
study is to answer this, not only relative to Newtonian fluids, but
also relative to non-Newtonian Bingham fluids.

The benefits and faults of the vane rheometer for different
applications and conditions, e.g. concentrated suspensions, poly-
mer systems, secondary flow regimes and so forth, is well reported

in Nazari et al. (2013) and thus such will not be repeated here. In
addition to this, the Reynolds number Re and justification for lam-
inar flow analysis is well treated in Nazari et al. (2013) and thus is
neither addressed again here.

The CFD software used in Nazari et al. (2013) was the COMSOL
Multiphysics 4.1. However in this work, the OpenFOAM 2.1.1 is uti-
lized. It is licensed under the GNU General Public License (GNU
GPL) and is available at www.openfoam.org, without charge or
annual fee of any kind. The benefits of having a GNU GPL licensed
code over a closed commercial code, is that the user has always a
full access to the source code, without any restriction, either to
understand, correct, modify or enhance the software. OpenFOAM
is written in C++. As such, an object-oriented programming
approach is used in the creation of data types (fields) that closely
mimics those of mathematical field theory (Weller et al., 1998).
For the code parallelization and communication between proces-
sors, the domain decomposition method is used with the Message
Passing Interface, or MPI (Berberović et al., 2010).

For the specific OpenFOAM solver used in this work, namely the
MRFSimpleFoam, the three dimensional momentum equation as
well as the continuity equation (see Section 3.3) are solved in par-
allel to obtain the velocity and hydrodynamic pressure profiles
throughout the geometry. More precisely, the pressure velocity
coupling is handled with a Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) procedure (Versteeg and Malalasekera,
2007), using a modified Rhie–Chow interpolation for cell centered
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data storage (Karrholm, 2006). Relative to the MRFSimpleFoam, the
SIMPLE consists of the following steps: (1) Set up the discretized
momentum predictor with relaxation. (2) Solve the discretized
momentum predictor. (3) Compute the cell face fluxes. (4) Solve
the pressure equation. (5) Correct and adjust the flux at cell
faces in a such manner that it is guaranteed conserved. (6) Apply
under relaxation to the pressure result. (7) Correct the velocities
on the basis of the new (relaxed) pressure field. (8) Update the
boundary conditions. (9) Repeat until the convergence criteria are
satisfied.

2. Geometry, mesh and boundary conditions

The specific vane rheometer under consideration is as described
in Nazari et al. (2013) and is a controlled stress rheometer. As
shown in the left illustration of Fig. 1, its rotating geometry con-
sists of a shaft (i.e. a rod) connected to four blades. The center-left
and center-right illustrations show how the stationary part con-
sists of four baffles connected to a cylinder (i.e. to a cub). The right
illustration demonstrates how the shaft–blades system is sub-
merged into the baffles-cylinder system (the center-left illustration
also shows this).

The thickness of each blade is 2.05 mm. The edge-to-edge diam-
eter of the blades (including the shaft diameter) is 34.0 mm. The
diameter of the shaft is 5.95 mm. The diameter of the cylinder is
49.8 mm, while it is 49:8� 2 � 3:7 ¼ 42:4 mm relative to the
extremities of the baffles. The thickness of each baffle is
1.95 mm. The height of the (rotating) blades is 49.9 mm, while
the height of the cylinder is 60.1 mm. All these geometric values
are obtained from Fig. 1 in Nazari et al. (2013).

To investigate the mesh dependency of the numerical result,
four different mesh densities (or mesh resolutions) are used,
namely 110,496, 316,056, 514,320 and 1,060,080 cells. The mesh
is generated with a native OpenFOAM mesh utility called block-
Mesh, and the mesh quality is checked with another OpenFOAM
utility, named checkMesh. For all the mesh cases, more than 96%
of the cells are hexahedra. The remaining cells consist of prisms,
tetrahedra and polyhedra.

The no-slip boundary condition (i.e. the Dirichlet boundary con-
dition) is used at all wall boundaries. However, at the top of the
rheometer (i.e. at/near the boundary between atmosphere and
liquid), the boundary condition consists of iz � rU ¼ @U=@z ¼ 0
(i.e. the Neumann boundary condition).

3. Theoretical background

3.1. Bingham model

In this work, the two standard Newtonian fluids described in
Nazari et al. (2013) are used in the CFD simulations. But including
these two cases, two Bingham viscoplastic fluids are also applied
here. With this, the constitutive equation used consists of the Gen-
eralized Newtonian Model (Tanner and Walters, 1998), or in short
GNM. The GNM is given by T ¼ 2g _e, where the terms T and g are
the extra stress tensor and the shear viscosity, respectively
(Barnes et al., 1989). The term _e ¼ 1

2 ðrUþ ðrUÞTÞ is known as
the rate-of-deformation tensor and U represents the inertial veloc-
ity (Malvern, 1969; Mase, 1970).

Since the Bingham model converges to the Newtonian model as
the yield stress s0 approaches zero, only the former is treated here:
In Oldroyd (1947a,b), a von Mises yield criterion is used to describe
the Bingham fluid. Using such approach (with the above
mentioned GNM), the flow behavior of the Bingham model can
be described with

T ¼ 2 lþ s0ffiffiffiffiffiffiffiffiffiffiffiffi
2 _e : _e
p

� �
_e for T : T=2 P s2

0; ð1Þ

_e ¼ 0 for T : T=2 < s2
0: ð2Þ

According to Eqs. (1) and (2), the yield surface is located by the con-
dition T : T=2 ¼ s2

0. In the region where T : T=2 < s2
0, the material

behaves as a rigid solid, while in the region with T : T=2 > s2
0, the

material flows with a shear viscosity of g ¼ lþ s0=
ffiffiffiffiffiffiffiffiffiffiffiffi
2 _e : _e
p

. In the
above, the more correct approach would be using S : S=2 instead
of T : T=2, where S ¼ r� ðtrðrÞ=3ÞI. But in the next paragraph it will
be shown that S ¼ T and thus either can be used. The term S is
known as the deviator stress tensor and r is the (total) stress tensor
(Malvern, 1969; Mase, 1970). The latter is given by r ¼ �pIþ T,
where I is the unit dyadic (Barnes et al., 1989).

Only incompressible material is treated in this research, mean-
ing trð _eÞ ¼ r � U ¼ 0. The material is also assumed isothermal, but
the following derivation is not contingent on that. For incompress-
ible fluid, the extra stress tensor T is also the deviator stress tensor
S. That is, S ¼ r� ðtrðrÞ=3ÞI ¼ �pIþ Tþ pI� ð2=3Þgtrð _eÞI ¼ T.
Therefore, the term �T : T=2 represents the second invariant of
the deviator stress tensor IIS ¼ ðtrðSÞtrðSÞ � S : SÞ=2 ¼ �S : S=2.
Hence, the von Mises shear stress is

Nomenclature

iz unit vector in the axis of the shaft (i.e. here the z-axis)
(–) (Section 3.4)

p hydrodynamic pressure (Pa) (Sections 3.3 and 3.4)
T extra stress tensor (Pa) (Eq. (6))
T total shaft torque, or ‘‘total torque’’ ðT ¼ Tg þ TpÞ (N m)

(Section 3.4)
Tp torque by hydrodynamic pressure (N m) (Eq. (10))
Tp ¼ Tp � iz shaft torque by hydrodynamic pressure, or

‘‘pressure–torque’’ (N m) (Section 3.4)
Tg torque by viscous stress (N m) (Eq. (9))
Tg ¼ Tg � iz shaft torque by viscous stress, or ‘‘viscous–tor-

que’’ (N m) (Section 3.4)
U velocity (in the inertial reference frame) (m/s)

(Section 3.3)

Greek letters
_c shear rate ðs�1Þ (Section 3.1)

_e rate-of-deformation tensor ðs�1Þ (Section 3.1)
g shear viscosity (also, apparent viscosity) (Pa s)

(Section 3.2)
l plastic viscosity (Pa s) (Section 3.2)
q density ðkg=m3Þ (Eqs. (7) and (8))
r (total) stress tensor (also, constitutive equation) (Pa)

(Section 3.1)
s0 yield stress (also, yield value; cf. British Standard BS

5168:1975) (Pa) (Section 3.2)
x shaft angular velocity (and of the 4 blades connected to

it) (rpm) (Sections 3.3 and 4)

Symbols
� in the order of magnitude of (as in 55 � 102)
� approximate equal to (as in 55 � 56)
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