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This paper presents a proper orthogonal decomposition (POD) method that uses dynamic basis functions.
The dynamic functions are of a prescribed form and do not explicitly depend on time but rather on
parameters associated with flow unsteadiness. This POD method has been developed for modeling non-
linear flows with deforming meshes but can also be applied to fixed meshes. The method is illustrated for
subsonic and transonic flows in channels with fixed and deforming meshes. This method properly cap-
tured flow nonlinearities and shock motion for cases in which the classical POD method failed.
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1. Introduction

Despite continuous advances in computer hardware, the
computational cost of high-fidelity computational fluid dynamics
simulations remains a limiting factor for many science- and
engineering-relevant problems. A typical example of numerical
simulations that require large computational resources is aeroelas-
ticity, where unsteadiness of the flow and temporal variation of the
mesh can be a computational burden.

Reduced-order modeling based on proper orthogonal decompo-
sition (POD) has proven to be a successful method for reducing the
computational time, while providing high-fidelity results for a
wide range of applications covering transport phenomena and
structural dynamics (Dowell and Hall, 2001). Through model
reduction, dominant spatial modes are used to describe the flow.
The nonlinear partial differential equations can then be reduced
to ordinary differential equations from which the time coefficients
that weight the spatial modes are calculated.

Proper orthogonal decomposition is a method through which
snapshots of the flow obtained from the full-order model (FOM)
are used to extract the optimal set of spatially dependent basis
functions (Holmes et al., 1996). The large set of partial differential
equations is then projected onto the basis functions, resulting in a
much smaller set of ordinary differential equations.

Reviews of POD-based reduced-order models (ROMs) have been
presented in (Dowell and Tang, 2003; Lucia et al., 2004; Barone and
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Payne, 2005; Noack et al., 2011). In the last decade, three main
research directions were explored for POD-based ROMs: (i)
improving the prediction of off-reference conditions, (ii) improving
performance, and (iii) modeling moving/deforming meshes.

Proposed modifications to the POD basis functions to account
for off-reference conditions include direct interpolation, enriching
the snapshot database (Schmit and Glauser, 2004), interpolation
using subspace angles (Lieu and Lesoinne, 2004; Lieu et al., 2006;
Lieu and Farhat, 2007) or a tangent space to a Grassmann manifold
(Amsallem and Farhat, 2008; Amsallem, 2010; Freno et al., 2013),
sensitivity analysis using parametric derivatives (Hay et al., 2008,
2010), and using actuation modes (Kasnakoglu et al., 2008;
Bourguet et al., 2011). Some of these methods are reviewed in
Vetrano et al. (2011).

To improve performance for compressible flows, the use of
physically or numerically sensible inner products has been sug-
gested to better account for dynamically significant variables
(Rowley et al., 2004) and to improve ROM stability (Barone et al.,
2009). For multiphase flows, Brenner et al. (2012) showed that
treating field variables separately when assembling the autocorre-
lation matrix, which yields the POD basis functions, produces
greater error than using a coupled approach. To solve flows with
discontinuities, an augmented POD method (Brenner et al., 2010)
was developed using mathematical morphology. Several accelera-
tion techniques were proposed in Cizmas et al. (2008).

The modeling of moving/deforming meshes has been primarily
motivated by aeroelastic applications, which are notorious for
requiring large computational resources. POD has been used in
linear (Hall et al., 2000; Thomas et al., 2003; Lieu et al., 2006;
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Amsallem and Farhat, 2008; Bui-Thanh et al., 2008) and nonlinear
aeroelastic simulations (Anttonen, 2001; Lewin and Haj-Hariri,
2005; Anttonen et al., 2005; Placzek et al., 2011). One of the pri-
mary challenges associated with nonlinear aeroelastic simulations
is the motion of the mesh, particularly when it is deformed. Spatial
and temporal integration no longer commute when the mesh var-
ies in time. However, if the mesh is deformed in a topologically
consistent manner, the integrals can commute if a computational
index-based domain is used.

Anttonen (2001) and Anttonen et al. (2003, 2005) proposed
using different sets of index-based basis functions associated with
different deformations; however, discontinuously changing basis
functions with respect to time reduces the solution fidelity. Addi-
tionally, several sets of basis functions are required to yield a
robust model, and a matching algorithm is necessary to determine
the most appropriate set.

Liberge and Hamdouni (2010) used interpolation by treating
the fluid-structure domain as a multiphase flow. In addition to
requiring interpolation, modifications to the boundary conditions
are required. Lewin and Haj-Hariri (2005) modeled the incom-
pressible Navier-Stokes equations by using the reference frame
of the moving airfoil to exploit the simplified boundary conditions
that arise from incompressible viscous flow. Placzek et al. (2011)
modeled compressible flow for rigid-body motions. These
approaches do not address mesh deformation.

Bourguet et al. (2011) developed an approach to model tran-
sonic flows around an airfoil submitted to small deformations.
The domain was deformed fictitiously through a Hadamard formu-
lation of the compressible Navier-Stokes equations. To account for
the deformation, the boundary conditions about the airfoil were
modified.

This paper presents a new, index-based method that uses a
dynamic average and dynamic basis functions to model compress-
ible flow using a deforming mesh. There is no need for interpola-
tion or modification of the boundary conditions. These dynamic
functions vary continuously with respect to parameters associated
with the flow unsteadiness and/or mesh deformation, and they are
optimal, subject to the prescribed form. Furthermore, one set of
basis functions is used, and a matching algorithm is unnecessary.

The derivation of the dynamic average and basis functions is
presented in Section 2, and the flow solver is described in Section 3.
In Section 4, results are shown for subsonic and transonic flows
with fixed and deforming meshes. Comparisons are made between
the full-order model and the reduced-order model using static and
dynamic functions. The results are discussed in Section 5, and con-
clusions are presented in Section 6.

2. Proper orthogonal decomposition

Proper orthogonal decomposition is a method through which an
optimal set of orthogonal spatial basis functions is extracted from a
set of data, from which the mean has typically been subtracted.
The spatial basis functions are linearly combined using time-
dependent coefficients to form a reduced-order model:

U, t) ~ U(X) + D a(t)@;(x). (1)
=

In (1), U(x) is the time average, a;(t) are the time coefficients,
and ¢@;(x) are the basis functions. Through reduced-order model-
ing, the partial differential equations are reduced to a system of
ordinary differential equations.

In this paper, proposed modifications to POD include replacing
the static average and static basis functions with a dynamic aver-
age and dynamic basis functions. The dynamic average and
dynamic basis functions do not explicitly depend on time but

rather on parameters associated with the flow unsteadiness and/
or mesh deformation.
The dynamic functions used in this paper take the form

F:7,9) = fo(X) +2f(X) + 2(X);

however, this function can be trivially extended to account for addi-
tional parameters, higher derivatives, and/or greater polynomial
degree, provided all parameters, derivatives, and multiples thereof
are linearly independent.

The first subsection outlines the procedure for determining the
static basis functions (Sirovich, 1987; Holmes et al., 1996), and
the remaining subsections show how the optimal dynamic
average and dynamic basis functions of the prescribed form are
computed.

2.1. Standard approach

A more general framework for the traditional approach to POD
is presented to facilitate the extensions proposed later in this
section. Conventionally, after subtracting the time average, U, from
the snapshots, U,U’ = U — U is approximated by

Ux )~ Y a(t)e;x),
=1

where a;(t) = (U'(x,t), ¢;(X))/(9;(X), ¢;(x)), and (-,-) is the inner
product. The basis functions have been presumed mutually orthog-
onal to more efficiently span the subspace. U’ is equal to the sum of
the approximation obtained from the projection onto the basis and
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where | - | is the L>-norm. Consequently, minimizing the time-aver-

aged error is equivalent to maximizing the time-averaged approxi-

mation. Due to the orthogonality assumption, the time-averaged
square of the norm of the approximation can be simplified to
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as shown in Appendix A. (-) denotes the time average.

The norm of the approximation is maximized by determining
the optimal basis functions that maximize the functional
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where the subscript j has been removed for convemence Using the
notation A(t) = U'(x, t) ® U'(x, t) yields (U, (p) = @"Ag, 50 that (2)
becomes

_/9"A(t)e
Q= (—2"). 3
Jlol < (0. 0) 3
As shown in Appendix B, (3) is extremized when
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