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a b s t r a c t

Resolving flow near walls is critical to reproducing the high rates of shear that generate turbulence in
high Reynolds number, wall-bounded flows. In the present study, we examine the resolution require-
ments for correctly reproducing mean flow quantities and wall shear stress distribution in a large eddy
simulation using the spectral element method. In this method, derivatives are only guaranteed in a weak
sense, and the same is true of quantities composed of derivatives, such as the wall shear stress. We are
interested in what is required to resolve the wall shear stress in problems that lack homogeneity in at
least one direction. The problem of interest is that of parallel flow through a rod bundle configuration.
Several meshes for this problem are systematically compared. In addition, we conduct a study of channel
flow in order to examine the issues in a canonical flow that contains spanwise homogeneity missing in
rod bundle flow. In the case of channel flow, we compare several meshes and subgrid scale models.
We find that typical measures of accuracy, such as the law of the wall, are not sufficient for determining
the resolution of quantities that vary along the wall. Spanwise variation of wall shear stress in underre-
solved flows is characterized by spikes—physical points without well-defined derivatives of the velocity—
found at element boundaries. These spikes are not particular to any subgrid scale model and are the
unavoidable consequence of underresolution. Accurately reproducing the wall shear stress distribution,
while minimizing the computational costs, requires increasing the number of elements along the wall
(local h-refinement) and using very high order (N ¼ 19) basis functions (p-refinement). We suggest that
while these requirements are not easily generalized to grid spacing guidelines, one can apply a general
process: construct a mesh that progressively increases elements along any walls, and increase the order
of basis functions until the distribution of wall shear stress or any other quantity of interest is smooth.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Accurate prediction of wall shear stress is critical in the analysis
of turbulent wall-bounded flows (Pope, 2000). It is important for
the production of correct friction factors, turbulent kinetic energy
production, the analysis of heat transfer, and study of fluid–
structure interaction. In most flows of engineering interest, the
wall shear stress and viscous stresses are nonuniform since they
are functions of the velocity derivatives. In order to predict the wall

shear stress correctly, the regularity and smoothness of the veloc-
ity solution need to be guaranteed. However, in methods that solve
the weak form of the Navier–Stokes equation such as the spectral
element method (SEM), the space of solutions is usually chosen to
be less regular than C1 so that only weak derivatives are guaran-
teed to exist, and the derivatives do not have the same strict
requirement to converge that the solution does (Deville et al.,
2002). While approximations of the convergence of derivatives
exist, we are interested in what is seen in practice, especially in
the case of underresolved, non-DNS (direct numerical simulation)
flows. We aim to provide guidelines to predict wall shear stress
in complex engineering flows at realistic Reynolds numbers while
maintaining the mesh resolution as coarse as possible. The target
problem chosen is the parallel flow in rod bundles.

The prediction of the flow in rod bundles is of fundamental
importance in a variety of engineering fields. It is, for instance, rel-
evant for heat transfer applications such as the design of tube and
shell heat exchangers as well as nuclear reactor core analysis. In
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nuclear reactor cores, the heat produced by the nuclear fuel
contained within the rods is removed by the coolant flowing
through the bundle. To predict with greater accuracy the behavior
and the thermal performance of nuclear reactors, one must predict
accurately the underlying hydrodynamics.

Rod bundle flows differ significantly from pipe flow and parallel
channel flow (Rehme, 1987; Trupp and Azad, 1975; Hooper, 1980).
Rod bundles present flow characteristics that are reminiscent of
external flows. Viscous dissipation and wall shear stress change
azimuthally. Coherent structures might develop in the streamwise
direction for particularly tight bundles. Moreover, the flow anisot-
ropy induces secondary flows.

Especially important for nuclear engineering applications is the
prediction of the peak fuel temperature and peak fluid temperature.
Ideally, one would compute a temperature solution by prescribing a
heat flux at the boundary or, even better, by performing a conjugate
heat transfer calculation. In cases where that is not possible, the
Reynolds analogy can be used to obtain an approximation to the
heat transfer from known values of the wall shear stress.

RANS models developed for internal flows do not usually fare
well for rod bundles because of a combination of the previous
points (Baglietto and Ninokata, 2005; Merzari et al., 2008).
Accounting for more physics and reasonable tuning leads to better
results. However, a more general approach such as large eddy
simulation (LES) is desirable to lead to better predictability and
freedom in exploring the design space (Merzari and Ninokata,
2011). In LES the large scales of turbulence are resolved while
the small scale contribution to dissipation is modeled.
Wall-resolved LES presents significant advantages when consider-
ing conjugate heat transfer calculations. Moreover, it permits
exploring the physics of near-wall turbulence, which dramatically
influences heat transfer. Traditionally, wall-resolved LES has been
limited to relatively low Reynolds numbers since the computa-
tional cost scales superlinearly with the Reynolds number. One of
the purposes of the present work is to test such methodology at
Reynolds numbers of engineering interest and to verify how coarse
the grid can be. As part of the Center for the Exascale Simulation of
Advanced Reactors (CESAR) (CESAR Team, 2012) effort, increas-
ingly large simulations are planned comprising full reactor cores,
and accessing the minimal computational requirements is of
fundamental importance.

The code used for all the calculations performed for the present
work is Nek5000 (Fischer, 1997; Fischer et al., 2008), a code devel-
oped at Argonne National Laboratory and the target CFD code of
CESAR. Nek5000 has demonstrated excellent parallel performance
on petascale level machines when at least 20,000 collocation
points are allocated per MPI process. Nek5000 solves the incom-
pressible Navier–Stokes equations in the weak form using the
spectral element method, a higher-order method in space.

In the present paper we explore the computational require-
ments to perform LES simulations at high Reynolds numbers in
rod bundles using Nek5000. We study two cases: parallel flow
around a single rod in an infinite array and channel flow. The objec-
tive is to be able to perform full bundle simulations at the Reynolds
numbers encountered in prototype reactors (�70,000) with the
least amount of computational effort possible while maintaining
excellent accuracy for both velocity distribution and wall shear
stress. This implies operating LES at the limit of underresolution,
where the method does not guarantee a smooth solution of the
derivatives. An approach to locally increase the resolution was
found to be required in order to correctly resolve the wall shear
stress. In fact, in order to achieve accurate prediction of wall shear
stress in an LES, resolution requirements are greater than what is
needed for other measures of accuracy such as the law of the wall.

Preliminary results for a 37-rod bundle simulation, performed
by using the resolution guidelines described in the present work,

are shown in Fig. 1. The grid resolution studies presented in this
work have been performed on an infinite array (Fig. 1d) for
simplicity and reduced computational cost.

In Section 2, the computational methodology is summarized. In
Section 3 the issues concerning wall shear stress are described in
more detail. Section 4 contains a systematic study of the effects
of underresolution on the mean flow quantities in the case of
channel flow. Section 5 focuses on the target case, the parallel flow
in rod bundles. The results of several calculations are compared
and conclusions drawn about best practices.

2. Methodology

Calculations were performed by using the spectral element
code Nek5000 (Fischer et al., 2008). Nek5000 solves the
incompressible Navier–Stokes equations.

In this study the incompressible Navier–Stokes equations are
solved in their standard Cartesian form:
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along with appropriate boundary conditions. All variables have
been nondimensionalized by a characteristic length d and bulk
velocity scale Ub; Re is the Reynolds number.

The domain and equations are discretized following the form of
the spectral element method. The spectral element method solves
the Navier–Stokes equations on a given domain by discretizing the
solution space into elements such that the global solution is com-
posed of piecewise polynomial functions with compact support.
The problem is solved as a variational problem in what is known
as weak form (Deville et al., 2002). (More details are given in
Section 3.) Lagrangian polynomial functions of up to the 23rd
degree have been used to discretize the velocity field in each
element in the present work. In the generalized, weighted residual
framework, the present spectral-element method can be classified
as a Galerkin method where the test functions and the basis
functions for each element are Lagrange polynomials evaluated
on Gauss–Lobatto–Legendre collocations points for the velocity.
The pressure is solved with the same order polynomials as the
velocity (PN-PN formulation).

Eqs. (1a) and (1b) are integrated in time by using a characteris-
tic scheme as described by Maday et al. (1990). This method avoids
the Courant–Friedrichs–Lewy (CFL) stability constraint in typical
semi-implicit timestepping implementations, allowing greater
time steps with CFL values in the range of 3–4.

In all problems considered here, periodic boundary conditions
are applied in the streamwise direction. A dynamic forcing term
is calculated at each time step to ensure a fixed flow rate.

The LES calculations carried out in this study use the stabilizing
filter of Fischer and Mullen (2001). In this method, the solution at
each time step is explicitly filtered. The filter operator Fa is defined
as

Fa :¼ aIN�1 þ ð1� aÞI ð2Þ

where I is the identity operator and IN is the interpolation operator
at the N þ 1 GLL nodes. This filter has the desirable property that it
preserves the spectral convergence of SEM. As N !1, the interpo-
lation error goes to zero exponentially.

Note that in Sections 4 and 5 of this paper we decompose the x
component of velocity as ~u ¼ U þ u, where U is the mean
component and u is the fluctuating component, and use � to
indicate averaging. Similarly, the y and z components of velocity
are denoted by ~v ¼ V þ v and ~w ¼W þw, respectively.
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