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a b s t r a c t

The concept of self-healing has been recently introduced in power systems. The general self-healing
framework is complex and includes several aspects of networks’ operation. This paper deals with auto-
mated switching in the context of autonomous operation of distribution networks. The paper presents a
new network data model that allows effective reconfiguration algorithms to be designed. The model is
based on bipartite graph representation of switching possibilities. The model properties and capabilities
are illustrated for simple self-healing algorithms and a small real world medium voltage distribution
network.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Self-healing is a key feature of the upcoming distribution
networks. This feature is defined as the capability to identify, diag-
nose and recover from system disruptions with the objective of
maximizing system availability, survivability, maintainability and
reliability [1]. Self-healing in power systems often refers to auto-
matic fault detection, isolation and restoration. The healing process
consists in isolating faults and restoring power both upstream and
downstream the faults by analyzing and automatically undertaking
switching operations to maximize restored load [2–4].

The problem of fault identification and diagnosis is a well stud-
ied one [5,6]. In this paper we focus on the recovery problem and
on the solution techniques that would bring the system back to
normal without human operator intervention. Several approaches
have been proposed in the past. These can be classified into two
main groups:

(1) solutions based on network optimization algorithms [7,8]; and
(2) solutions based on data storage of pre-defined switching

schemes [9,10].
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pcarvalho@ist.utl.pt (P.M.S. Carvalho).

The first group of approaches usually lacks speed of response.
This is because data structures and algorithms have not been
designed appropriately for fault recovery. These were rather inher-
ited from off-line applications used in operations planning. The
second group of approaches lacks flexibility of response. This is
because topology of a network changes frequently and that requires
frequent updating of the switching schemes. Moreover, faults may
occur in many different operating configurations (due to mainte-
nance and previous faults), which makes the database updating
very demanding.

The solution proposed in this paper belongs to the group of
optimization based approaches. We propose new data structures
upon which effective algorithms can be designed. With the new
data structures, we resolve the problem of speed while keeping the
flexibility of optimization approaches.

The new data structures are based on bipartite graph theory.
A special bipartite graph that represents the switching possibili-
ties can be built. This graph is not built to represent the physical
network itself, but rather to abstract the switching dynamics. This
paper will present the necessary framework for building such
graphs and, based on this framework, we will propose an approach
to automated switching of distribution networks and illustrate its
application. By using the new bipartite graph data structures, the
high solution quality of the first group of recovery approaches is
preserved, while achieving the speed of response of the second
group of approaches.

The paper is organized as follows. In Section 2 we outline
the necessary background on graphs. In Section 3 we introduce
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Fig. 1. Schematic representation of a distribution network G with its operating
configuration T in solid line.

the bipartite graph model. Reconfiguration dynamics is described,
as well as the model representation and initialization. Section 4
presents some algorithms to illustrate how the model can be used
for self-healing in distribution networks. In Section 5 we show
results from real world distribution network and illustrate the pro-
posed procedures with practical examples. Section 6 concludes the
paper.

2. Terminology

Most of the following terminology on graph theory can be found
in [11–13].

2.1. Graph terminology

A graph is a pair (N, A) of a finite set N of nodes and a set A of
arcs with A ⊆

{
{n1, n2}|n1, n2 ∈ N

}
. In the power system context,

the graph is to represent the network. The nodes are the load, sub-
stations and connection points; and the arcs are the cables, lines,
busbars and switch devices. Fig. 1 shows an example of a graph.

A graph G is said to be bipartite, if its nodes can be partitioned
into two sets {N1, N2} so that A ⊆ {{n1, n2} | n1 ∈ N1, n2 ∈ N2}. It is
also denoted as a (N1, N2, A) graph. For an example of a bipartite
graph see Fig. 4.

Bipartite graphs are used to support the new model of distribu-
tion network. This model is different from the classical (WYSIWYG)
representation of network topology. To make the text more clear,
we refer to nodes of the bipartite graph as vertices and to its arcs as
edges. The terms nodes and arcs will be reserved for the graph G and
its spanning trees. The term b ranch will be used for the distribution
network itself. Then we get a graph G = (N, A) and a bipartite graph
B = (V1, V2, E).

A tree is such a graph (bipartite by its nature), that contains no
cycles.

A spanning treeT of a graph G is a pair (N, A′) where A′ is such
that every node of N can be reached from any other node of N in a
unique way, i.e., T is acyclic. In the distribution context, spanning
trees are to represent radial network configurations. Solid lines in
Fig. 1 show a spanning tree.

A co-tree arc c is an arc of a graph G that is not an arc of its tree
T. If a spanning tree T represents a radial configuration, then the
co-tree arcs represent arcs that can be closed to create a mesh, i.e.,
possible switching ON operations. For example, see arc B, or the
other dashed arcs in Fig. 1.

A fundamental cycleY of G with respect to a spanning tree T is a set
of arcs defined by a co-tree arc c and the path in T between the two
endnodes of c. In the distribution context, the fundamental cycle
induced by a switching ON operation represents the corresponding
mesh. In Fig. 1, the lower right square aBcd is a fundamental cycle
with respect to T (where the corresponding co-tree arc would be B).

2.2. Matching terminology

Let G be a graph, G = (N, A), and M a set of arcs M ⊆ A. Denote by
∂M the set of end nodes of the arcs in M. We say M is a matching
in G if different arcs of M do not have an end node in common, i.e.,
if |∂M | = 2 | M |, where |·| denotes cardinality. For example, in Fig. 1,
the set of arcs a and c is a matching, while the set of arcs a and d is
not, as they have a node in common.

A path (ai)i∈{1,. . .,k} in graph G is M-alternating if for any i ∈ {1, . . .,
k − 1} exactly one of the arcs ai and ai+1 is in M. An M-alternating
path (ai)i∈{1,. . .,k} in G is M-augmenting if its end nodes are not in ∂M.
For example, considering Fig. 1 and matching M1 = {a, c}, the path
(adc) is M1-alternating. Considering a different matching M2 = {d},
the same path (adc) is M2-augmenting.

3. Network model

This paper proposes a new data model that captures the topo-
logical properties of radially operated networks and supports
completely autonomous decision making on network operating
reconfiguration. Our model consists of the data structures repre-
senting the bipartite graph and the methods that are necessary to
work with such a graph.

The model is based on the idea of reconfiguring radial networks
by undertaking switching steps, i.e., such pairs of switching opera-
tions that consist of closing one (arbitrary) branch of the network
and opening another so that the resulting configuration is also
radial.

Choosing the branch to close is arbitrary, while the branch to
open has to be one of the branches lying on the mesh thereby
created. Recall that the mesh can be defined in graph theory as
a fundamental cycle (see Section 2). If so, then a switching step is
defined as in the following.

Definition 1. Let G = (N, A) be a graph representing the distribu-
tion network. Its operating configuration is a spanning tree, say
T = (N, AT), where AT ∈ A. Let YB

T be a fundamental cycle with respect
to T, defined by a co-tree arc element B. A switching step{B, c} is
then defined as an exchange of an arc element c, that lies on the
fundamental cycle YB

T , for a co-tree arc element B, i.e.,

{B, c}| c ∈ YB
T ∩ AT , B ∈ YB

T ∩ (A \ AT ). (1)

One can say, that for a given switching ON operation represented by
an arc B ∈ (A \ AT), a feasible switching step can only be composed by
those switching OFF operations that lie on the fundamental cycle
(YB

T ) of the graph G with respect to T defined by (closing) B.

For instance see Fig. 1, where the lower left square is a fun-
damental cycle of G with respect to T defined by the branch B.
Switching OFF operations that can be found on this cycle are a, c
and d.

Notice that all the branches represented in G by A \ AT are co-tree
arcs of the spanning tree T, i.e., network branches currently not in
use.

The following result summarizes the relationship between
switching steps and topology feasibility.

Result 1. By proceeding in switching steps, the network is guar-
anteed to be topologically feasible, i.e., radial and connected.

Without loss of any feasible solution, applying the switching
steps dramatically reduces the reconfiguration search space and
gives the model the opportunity to explore all the topologically
feasible configurations in order to find those that would be also
electrically feasible (i.e., not violating the operating constraints:
minimal node voltages, maximum branch and transformer cur-
rents), or optimal with respect to chosen criteria. Notice that any
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