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A high-order simplified thermal lattice Boltzmann method (HSTLBM) is developed in this paper for accu-
rate and efficient simulation of incompressible thermal flows. The derivation of HSTLBM stems from the
recently developed simplified thermal lattice Boltzmann method (STLBM) and incorporates high-order
interpolation algorithms, which reflects an effective combination of local second-order reconstruction
and global high-order scheme. By introducing virtual streaming nodes, HSTLBM decouples the streaming
distance from the mesh spacing and then correlates them through high-order interpolation scheme.
Delicate parametric studies indicate that adopting 5-point Lagrange interpolation and setting the stream-
ing distance as 0.2 times of the mesh spacing could give optimal results which balances computational
accuracy, stability, and efficiency well; and third-order of global accuracy can be achieved. HSTLBM
inherits various merits of STLBM, especially its nice numerical stability. As a result, HSTLBM can give
accurate and stable solutions on coarser meshes for problems at high Reynolds/Rayleigh numbers.
Higher efficiency and lower memory cost can thus be expected. A series of benchmark tests are provided
for comprehensive evaluation of HSTLBM in modelling two- and three-dimensional problems and on
uniform/non-uniform meshes.
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1. Introduction

Accurate and efficient simulation of thermal flows has always
been an attractive topic in Computational Fluid Dynamics (CFD)
community. Various numerical methods have been proposed in
the past decades [1]. Among them, the lattice Boltzmann method
(LBM), which is constructed on a mesoscopic scale, is welcomed
by researchers due to its simplicity, kinetic nature, and explicitness
[2-5]. Typical thermal models developed in the framework of LBM
include the multispeed model [6,7], the passive scalar method
[8,9], and the thermal energy distribution model [10-12].

Apart from its merits, several drawbacks of the thermal lattice
Boltzmann method (TLBM) were uncovered in its development
and application. Most significant ones include high cost in virtual
memory, inconvenient implementation of physical boundary con-
dition, lattice uniformity and poor numerical stability at high Rey-
nolds/Rayleigh numbers [13-16]. Continuous efforts have been
made to suppress these drawbacks. Representative ones include
multiple-relaxation-time (MRT) LBM [3,17], interpolation supple-
mented LBM (ISLBM) [18], artificial compressibility method [19],
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entropic LBGK method [20], cascaded lattice Boltzmann method
[21] etc.

The recently developed simplified thermal lattice Boltzmann
method (STLBM), on the other hand, explores an alternative
approach of evolution within the LBM framework, which could
eliminate or alleviate the above drawbacks [22-24]. The evolution
process in STLBM is essentially reconstructing solutions to the
macroscopic equations recovered from TLBM and resolved in a
predictor-corrector step. The relationship between the non-
equilibrium part and the equilibrium part of the distribution func-
tions, which is given by the Chapman-Enskog (C-E) expansion anal-
ysis, plays an imperative role in the reconstruction process, and is
approximated in a manner with the second-order of accuracy in
STLBM. The resultant formulations of STLBM are basically func-
tions of equilibrium distribution functions. Since equilibrium dis-
tribution functions can be explicitly calculated from the
macroscopic variables, STLBM directly updates the macroscopic
variables instead of distribution functions. This greatly lowers
the cost in virtual memory and facilitates implementation of phys-
ical boundary conditions. Moreover, numerical tests revealed that
STLBM is a highly stable method which can maintain numerical
stability at high Reynolds/Rayleigh numbers and on very coarse
meshes [22,23].


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2018.07.067&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.067
mailto:mpeshuc@nus.edu.sg
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.067
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt

2 Z. Chen et al./International Journal of Heat and Mass Transfer 127 (2018) 1-16

However, it is noted that contradiction exists between the good
numerical stability and the second-order of spatial accuracy.
Although STLBM can give stable results at high Reynolds/Rayleigh
numbers, these results are inaccurate, which lowers its value of
reference to real engineering problems. Therefore, reducing the
numerical error, or increasing the numerical accuracy, is an attrac-
tive topic in nurturing the method, which is the motivation of the
present research.

The numerical error, which is defined as O(h"), is affected by
two major factors: the mesh spacing h and the order of accuracy
n. To reduce numerical error, one could either refine the mesh size
or increase the order of accuracy of the numerical model. Refining
mesh size is the simplest solution, but greatly increases numerical
efforts. The second strategy could give more accurate results on
relatively coarser meshes, but somehow complicates the formula-
tions and reduces the flexibility in boundary treatment and on
non-uniform mesh. The conventional strategy of constructing
high-order scheme of LBM or TLBM is quite tedious. If starting from
the fundamental formulations of LBM, one has to improve the
accuracy in the discretization of the velocity space, the streaming
term and the spatial derivatives simultaneously [25-28]. Through
this approach, more expansion terms emerge in the final formula-
tions, and the explicitness of the method is usually sacrificed.
Moreover, the flexibility of constructed high-order scheme on
non-uniform and body-fitted meshes is another concern when
adopting high-order schemes.

In this paper, we propose an alternative way to construct high-
order simplified thermal lattice Boltzmann method (HSTLBM),
which could combine advantages of the above two approaches of
reducing numerical error. The principal notion of HSTLBM is an
effective combination of local second-order reconstruction and
global high-order scheme. By introducing virtual streaming nodes,
HSTLBM decouples the streaming distance J, from the mesh spac-
ing h, and then correlates them through high-order interpolation
algorithms. The local reconstruction of flow variables is still in
the second-order of accuracy in terms of §,. However, higher order
of global accuracy can be achieved if h is much larger than 6.
Apparently, decoupling and correlation are two key issues in devel-
oping HSTLBM, which corresponds to two important parameters:
the ratio of J, to h (¢ = 5,/h) and the number of interpolation points
(m). Selection of these parameters is made from the balance among
numerical accuracy, stability, and efficiency. A parametric opti-
mization study is performed in this paper to show that, when
Lagrange interpolation algorithm is adopted, setting ¢ =0.2 and
m=>5 gives the optimal results, and globally the third-order of
accuracy can be achieved.

There was a concern that adopting interpolation algorithm
could lead to high numerical dissipation in LBM [29]. It is notewor-
thy that the interpolation algorithm implemented in previous LB
models is usually in the second-order of accuracy which is consis-
tent with the order of accuracy of LBE. In the present HSTLBM,
high-order interpolation is adopted. Specifically, 5-point Lagrange
interpolation is utilized along each direction, which yields a trun-
cated error in the fourth order O(h*). The numerical diffusion intro-
duced by interpolation is thus reduced by two orders in theory. As
a result, HSTLBM could effectively preserve accuracy when simu-
lating high Reynolds/Rayleigh number flows on nonuniform
meshes.

Since the proposed HSTLBM maintains the ground structure of
STLBM, most merits of STLBM are inherited. Simplicity and explic-
itness are preserved. HSTLBM still reflects a direct evolution of
macroscopic variables instead of the distribution function, which
reduces the memory cost and facilitates implementation of high-
order boundary condition of physical properties. The most intrigu-
ing characteristic of STLBM, i.e. the nice numerical stability, is also
inherited by HSTLBM, which will be reflected in numerical tests at

high Rayleigh numbers and on coarse meshes. Together with its
high-order essence, HSTLBM can give converged and accurate
results on coarse meshes, which makes it an ideal solution to real
applications in high Reynolds/Rayleigh numbers. In addition,
HSTLBM is highly flexible in dealing with non-uniform and body-
fitted mesh, which makes it more competitive than other high-
order schemes within LBM framework.

The organization of the remaining parts of the paper is: Sec-
tion 2 gives a brief review of TLBM and STLBM; Section 3 presents
the derivation of high-order simplified thermal lattice Boltzmann
method (HSTLBM) as well as the implementation of high-order
boundary conditions. A parametric optimization study is carried
out in Section 4 to determine two key parameters in HSTLBM. Four
typical benchmark tests are then presented in Section 5 for com-
prehensive evaluation of the robustness of HSTLBM as well as its
flexibility on non-uniform and body-fitted meshes. Concluding
remarks are finally made in Section 6.

2. Brief outline of simplified thermal lattice Boltzmann method

2.1. Thermal lattice Boltzmann method (TLBM) and Chapman-Enskog
(C-E) expansion analysis

As a mesoscopic method, the thermal lattice Boltzmann method
(TLBM) updates the distribution functions instead of the macro-
scopic variables. One popular TLBM model is the thermal energy
distribution model which incorporates the thermal effect by intro-
ducing the internal energy distribution function [11,12]. The evolu-
tion of the thermal energy distribution model can be written as
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where f, and g, represent the density and the internal energy dis-
tribution functions along « direction, respectively; 7, and . are sin-
gle relaxation parameters which respectively correspond to the
kinematic viscosity and the thermal diffusivity; J; is the time step
applied in the model; M and N are the number of the lattice veloc-
ities in lattice velocity model. Quantities superscripted by “eq”
denote the corresponding equilibrium state, which, by omitting
minor terms in O(Ma>), can be expressed as
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where p, u and e are density, velocity vector, and internal energy,
respectively; ¢ =,/ is equal to 1; o, is the lattice spacing; and
the weighting coefficients w,, the sound speed c; and the lattice
velocity directions e, are
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