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a b s t r a c t

A horizontal temperature gradient can cause a flow in a layer of liquid with a free surface via several
different mechanisms. The most universal one is due to thermocapillary stresses that arise due to the
temperature dependence of surface tension. For binary liquids, the flow can also be driven by solutocap-
illary stresses that arise due to the dependence of surface tension on the composition of the liquid. For
some binary liquids, such as water-alcohol mixtures, solutocapillary stresses are primarily due to phase
change (e.g., differential evaporation or condensation of the two components), and these two mecha-
nisms can counteract each other. A recent experimental study (Li and Yoda, 2016) has demonstrated that
the flow direction can be reversed by changing the amount of air present inside the experimental
apparatus. To understand how the presence of air affects the interfacial stresses, we have developed
and implemented numerically a comprehensive two-sided transport model, which accounts for transport
of heat, mass, and momentum in both phases and phase change across the interface and is able to repro-
duce the experimental results. The detailed analysis of these results shows that air tends to suppress
phase change and hence solutocapillary stresses. Removing the air enhances phase change, instead
suppressing the variation in the interfacial temperature and hence thermocapillary stresses.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Various types of convective flows can arise in layers of binary
liquid during evaporation [1–5] or condensation [6–10] driven by
the gradient in either vapor concentration or temperature normal
to the free surface. Perhaps the most famous example is ‘‘wine
tears” that form when a mixture of water and ethanol is allowed
to evaporate. This mixture is an example of a positive binary fluid
[11], where the more volatile component (ethanol) has lower sur-
face tension compared with the less volatile component (water).
Preferential evaporation of ethanol from a thin layer near a side
wall reduces surface tension of the mixture there and generates
solutocapillary forces that drive the liquid towards, and in some
instances up, the wall, which is a key physical mechanism behind
the formation of wine tears [12,13]. More recently it has been dis-
covered that thermocapillary stresses generated via evaporative
cooling of the liquid surface also play a role in this phenomenon
[14]. In this specific case, evaporation causes the temperature near

the edge of the film to decrease, further increasing surface tension,
so thermocapillary stresses enhance solutocapillary ones.

Under certain conditions, however, thermocapillary and
solutocapillary stresses can oppose each other. This property can
be usefully exploited when thermocapillarity has an adverse effect,
e.g., in thermal management devices, such as heat pipes, which
rely on evaporative cooling. Heat pipes are effectively sealed cavi-
ties partially filled with a volatile liquid, and it is the temperature
gradient tangential to the free surface that drives the system out of
equilibrium and generates the flow. For pure fluids, thermocapil-
lary stresses drive the flow away from the hot end of the heat pipe,
which can cause dry-out leading to a complete loss of evaporative
cooling and a dramatic increase in the temperature of the hot end.
The adverse effect of thermocapillarity can be ameliorated by using
a positive binary coolant [15], where the differential evaporation of
the two components causes solutocapillary stresses towards,
rather than away from, the hot end. Indeed, experimental studies
have shown that the direction of the flow can be reversed by using
a mixture of water with ethanol [16] or methanol [17]. Beneficial
effects of using a binary mixture on the performance of a heat pipe
in microgravity have also been demonstrated [18].
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There is a vast literature on convection in binary fluids driven
by a vertical [19–22] temperature gradient, but almost all of it is
devoted to nonvolatile liquids, where solutocapillary stresses arise
due to the Soret effect [23] rather than differential phase change.
We should also mention studies of the role of solutocapillary stres-
ses in nucleate boiling [24], droplet evaporation [25], and thin film
evaporation [26]. However, other than an earlier work [27], there
are no theoretical (either numerical or analytical) studies of con-
vection in volatile binary mixtures subjected to a horizontal tem-
perature gradient; the single relevant numerical study [28] did
not consider the effects of phase change. Consequently, there is a
lack of understanding of the effects of transport (of heat or mass)
in the gas phase or the effects of noncondensable gases such as
air. The present study addresses this gap in our understanding by
introducing a comprehensive two-sided model that provides a
quantitative description of transport of heat, mass, and momentum
in both the liquid and the gas phase as well as across the liquid-gas
interface.

The model is described in detail in Section 2. The results of the
numerical investigations of this model are presented, analyzed,
and compared with experimental observations reported by Li and
Yoda [17] in Section 3. Our summary and conclusions are
presented in Section 4.

2. Mathematical model

2.1. Governing equations

When the liquid is a binary mixture of two volatile components
(in this study we will focus on the special case of water-methanol
mixtures), the gas phase above the liquid layer is generally a multi-
component mixture of the vapors of the two components of the
liquid and various noncondensable gases (e.g., air) that tend to
be dissolved in the liquid. Under typical experimental conditions,
one tends to find a ternary mixture containing air whose concen-
tration depends on whether the liquid has been degassed and
whether the cavity (cf. Fig. 1) has been evacuated before being
filled with the binary liquid. The transport model describing a layer
of binary liquid in local thermodynamic equilibrium with the
ternary gas mixture can be constructed as a generalization of the
two-sided transport models [29–32] describing single-component
liquids. Both phases (liquid and gas) will be considered
incompressible

r � u ¼ 0 ð1Þ
with momentum transport in the bulk described by the Navier-
Stokes equation in the Boussinesq approximation

q @tuþ u � ruð Þ ¼ �rpþ lr2uþ qg; ð2Þ
where u is the velocity, p is the pressure, q and l are the density
and dynamic viscosity of the fluid, respectively, and g is the gravi-

tational acceleration. Heat transport in the bulk is described by
the advection-diffusion equation

@tT þ u � rT ¼ ar2T; ð3Þ
where T is the temperature and a ¼ k=qCp is the thermal diffusivity
of the fluid.

The density of the liquid mixture is

ql ¼ ql;m þ ql;w; ð4Þ
where ql;b is the density of component b in the mixture. Here and
below the subscript denotes the phase (l for the liquid, g for the
gas), and/or the component in the mixture (m for methanol, w for
water, a for air). We will use the subscript i to denote the values
at the liquid-gas interface. A linear dependence of the density of
each component on the temperature is assumed,

ql;b ¼ q0
l;b½1� bl;b T � T0ð Þ�; ð5Þ

where bl;b ¼ �q�1
l;b @ql;b=@T at T ¼ T0 is the coefficient of thermal

expansion, q0
l;b is the density of component b in the mixture at the

reference temperature T0, which is given by

q0
l;b ¼ nlYbm1

b ; ð6Þ
where nl is the total number density in the liquid, m1

b is the mass of
one molecule, and Yb ¼ nl;b=nl is the concentration (molar fraction)
of component b in the liquid phase.

The density and pressure of the gas mixture are

qg ¼ qg;m þ qg;w þ qg;a;

pg ¼ pg;m þ pg;w þ pg;a; ð7Þ

where all components are assumed to be ideal,

qg;b ¼
Xbpg

RbT
¼ ngXbm1

b ;

pg;b ¼ Xbpg ¼ ngXbkBT; ð8Þ

Xb ¼ ng;b=ng is the concentration, Rb ¼ R=Mb is the specific gas
constant, Mb ¼ m1

bNA is the molar mass of component b, and
R ¼ kBNa is the universal gas constant. According to the Boussinesq
approximation, the spatial average of ql and qg is used on the left-
hand-side (but not the right-hand-side) of the Navier-Stokes Eq. (2)
for the liquid and the gas phase.

To avoid the assumption of dilute mixtures used in formulating
the transport models for simple fluids [29,32], we will describe
mass transport in both phases using molar fractions rather than
mass densities. The local mass/number conservation for compo-
nent b (in either the liquid or the gas phase) can be described in
terms of the corresponding number density nb

@tnb þ u � rnb ¼ �r � jb; ð9Þ

where jb is the diffusive number flux of component bwith respect to
the bulk mixture that moves with velocity u. The liquid phase is a
binary mixture, so we can use Fick’s law

jb ¼ �nlDlrYb; ð10Þ
where Dl is the conventional binary mass diffusivity of the two
components. With the assumptions of incompressible flow and con-
stant total number density nl, the local mass/number conservation
Eq. (9) can be rewritten as an advection-diffusion equation for,
say, the water concentration in the liquid

@tYw þ u � rYw ¼ r � ðDlrYwÞ ð11ÞFig. 1. A sealed test cell containing the liquid and air/vapor mixture. Gravity is
pointing in the negative z direction.
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