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a b s t r a c t

Amacrosegregation simulation model is developed by coupling solute and energy conservation equations
with Lattice-Boltzmann Method (LBM), newly developing technique of computational fluid dynamics.
Effect of the solidification shrinkage is taken into account in the present LBM as well as effects of the
Darcy’s flow and thermos-solutal convection. The present LBM-coupled model is based on modified lat-
tice Bhadnager-Gross-Krook method, the numerical stability of which is better than that of the standard
LBM. Accordingly, the present LBM-coupled model can be applied to simulations of macrosegregation
behaviors in metallic alloy systems that cannot be handled by the previous LBM-coupled model. The
validity of the model was demonstrated by comparing the results for steady-state flows with those of
analytical solutions and a conventional model based on the Navier-Stokes equation. In addition, the com-
putational speed of the present model is compared with the one of conventional model in cases of lateral
directional solidification of Sn-Bi alloy and continuous casting of a steel slab. It is shown that the present
LBM-coupled model enables remarkably faster computation than the conventional model especially in
the latter case.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Macrosegregation refers to a non-uniform distribution of alloy-
ing elements on a scale of ingot. It stems frommacroscopic flows of
segregated liquids [1–4]. The macroscopic flow occurs in several
mechanisms such as thermosolutal convection, a flow due to solid-
ification shrinkage and forced flow and so on. Numerical models
have been developed for simulating macrosegregation behaviors.
The simulation models have been gradually sophisticated and their
usefulness accordingly increases [5–7]. However, the macrosegre-
gation simulations, in general, are computationally demanding
and the high computational cost restricts the simulation system
to a small size and/or it forces one to employ coarse gird, which
often causes inaccurate description of macrosegregation behavior
[4]. The numerical models are generally based on momentum,
mass, energy and solute conservation equations where the
momentum conservation is described by the Navier-Stokes (here-
after abbreviated as NS) equation. The numerical calculation for
the NS equation requires a time-consuming calculation for correc-
tion of the velocity and pressure, which is a bottleneck restricting

the speed-up of macrosegregation simulation. It is necessary to
accelerate the calculation of fluid dynamics.

Lattice-Boltzmann Method (LBM) is a newly developing tech-
nique for computational fluid dynamics [8–14]. This is a method
based on the lattice-Boltzmann equation that describes the time
evolution of particle distribution functions, from which the macro-
scopic quantities of fluid such as the density, velocity and pressure
can be calculated. Importantly, LBM does not require the time-
consuming calculation for correction of the velocity and pressure
and, hence, it generally enables fast computation of fluid dynamics.
Recently, we developed a model for simulating macrosegregation
based on LBM in which the NS equation is replaced by the
lattice-Boltzmann equation including effects of the thermossolutal
flow and Darcy’s flow [15]. The accuracy of the LBM-coupled model
was investigated by comparing the calculated results for the
steady-state flows with the results obtained by analytical solutions
and a conventional model based on the NS equation (NS-based
model). The results of the LBM-coupled model are almost identical
to those of the analytical and the NS-based models. Moreover, we
conducted a simulation for solidification in a small ingot of a model
alloy where the macrosegregation appears only by natural convec-
tion, by means of the LBM-coupled model and the NS-based model.
The LBM-coupled model yields almost the same result as the
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NS-based model. Importantly, the simulation of LBM-coupled
model is about five times faster than the one of NS-based model
[15].

As described above, the acceleration of macrosegregation simu-
lation was successfully achieved based on LBM. However, the fol-
lowing issues remain to be resolved. Although one cannot neglect
effect of themacroscopic flow driven by the solidification shrinkage
on the formation of macrosegregation in some cases [1–4], the
solidification shrinkage cannot be dealt with in the previous model.
More importantly, the LBM-coupled model developed in the previ-
ous study cannot be applied to real metallic alloy systems. In this
model, the numerical stabilities of LBM and the energy conserva-
tion equation limit the Prandtl number to about one order of mag-
nitude larger than typical values in metallic alloys [15]. In other
words, when the typical value of thermal diffusivity is employed,
the viscosity must be one order of magnitude higher than the typ-
ical value in metallic alloys in the light of the numerical stability of
LBM. This problem must be resolved. Moreover, it is important to
clarify how much acceleration can be achieved in simulations for
realistic casting processes. The advantage of parallel computing
technique should be investigated because LBM is suitable for paral-
lel computing. These issues are tackled in this paper.

The purpose of this study is to construct a model for macroseg-
regation simulations with high computational efficiency based on
LBM that can be applied to the simulations for realistic solidifica-
tion processes in metallic alloy systems. To this end, the effect of
solidification shrinkage is introduced in LBM. Moreover, the model
is constructed based on the recently-developed Modified Lattice
Bhadnager-Gross-Krook (MLBGK) method [16], the numerical sta-
bility of which is much higher than that of the standard LBM. Then,
the model is applied to the simulations for lateral directional solid-
ification of Sn-Bi alloy and continuous casting of steel. The compu-
tational speeds are investigated in comparison with the results of
the conventional NS-based model. The paper is organized as fol-
lows. The LBM-coupled model and the NS-based model are
explained in the next section. The results of steady-state flow, lat-
eral directional solidification and continuous casting are described
in Sections 3, 4 and 5, respectively. The conclusions are given in the
last section.

2. Numerical methods

2.1. Conventional model based on the Navier-Stokes equation

In this study, the LBM-coupled model is constructed by cou-
pling the MLBGK method with the solute and energy conservation
equations. As is similar to the previous work, the present modeling
rests on a NS-based model developed in early studies [17–19],
which was chosen because the numerical implementation is rela-
tively straightforward and the simulation results for lateral direc-
tional solidification of Sn-Bi alloy and continuous casting of steel
were already reported [17–19].

In the NS-based model, the incompressible fluid flow is calcu-
lated by the following equations [19],

r � u ¼ �b
@f s
@t

ð1Þ

@u
@t

þ u � ru ¼ �rp
q0

þ vr2uþ q0 þ dq
q0

g� v
K
u ð2Þ

where u is the velocity vector of fluid, b is the solidification shrink-
age rate, fs is the volume fraction of solid, p is the pressure, q0 is the
density at a reference state, v is the kinematic viscosity, dq repre-
sents the density change due to the variation of temperature
and concentration, g is the gravitational acceleration and K is the

permeability. In contrast to the previous work, the continuity Eq.
(1) includes the effect of solidification shrinkage. In the NS
equation (Eq. (2)), the third and fourth terms on the right-hand side
represent effects of thermosolutal convection and the Darcy’s
flow, respectively. In this study, the permeability K is given by
K = K0(1 � fs)3/fs2, where K0 is the permeability coefficient.

Eqs. (1) and (2) are coupled with the following energy conserva-
tion and solute conservation equations [17–19],
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where T is the temperature, aT is the thermal diffusivity, DH is the
latent heat and ch is the specific heat capacity, CL is the solute con-
centration in the liquid and ke is the equilibrium partition coeffi-
cient. In the solute conservation Eq. (4), the diffusion term is
omitted and the reaction term on the right-hand side is based on
the Scheil model.

Although several numerical methods were developed for solv-
ing the NS equation such as MAC [20] and SIMPLE methods [21],
a time-consuming calculation is required for correction of the
velocity and pressure in these methods. Hence, the computational
burden for solving NS equation is generally high and it occupies a
large part of the computational cost of macrosegregation simula-
tions. Hence, a key to acceleration of the macrosegregation simula-
tions lies in the calculation of fluid flow. In this study, the
continuity Eq. (1) and NS Eq. (2) are replaced by LBM.

We carried out simulations of the above-mentioned NS-based
model to compare its results with those of the LBM-coupled model.
In the present study, Eqs. (1) and (2) were solved based on the SIM-
PLE method in all simulations. The energy and solute conservation
Eqs. (3) and (4) were discretized based on a finite difference
method with a second order accuracy in space and they were
solved using a first order Euler scheme. One must pay attention
to numerical accuracy of advection term because it affects the sta-
bility and accuracy of macrosegregation simulations. In this study,
the advection terms were calculated based on the third-order
upwind scheme. The total variation diminishing scheme [22] was
employed to stabilize the numerical simulation only in the case
of continuous casting of a steel slab.

2.2. LBM-coupled model

LBM has attracted a great deal of attention as an effective com-
putational method for fluid dynamics [8–14]. LBM can be viewed
as a discrete version of the Boltzmann equation. In the previous
study, influence of solid fraction, Darcy’s flow and thermosolutal
convection were taken into account in LBM and it was coupled
with the energy and solute conservation equations [15]. This
LBM-coupled model developed in the previous work is first
described in this sub-section. In this study, the model including
the effect of solidification shrinkage is first developed based on
the previous model, and then, it is reformulated based on the
MLBGK model [16].

In LBM, the fluid consists of fictive and microscopic particles
moving at discrete velocities in discrete directions on a lattice.
Their collective behavior determines the macroscopic quantities
of fluids such as the density, velocity and pressure. The lattice-
Boltzmann equation is written as [14],

f aðxþ eadt; t þ dtÞ � f aðx; tÞ ¼ �1
s

f aðx; tÞ � f ðeqÞa ðx; tÞ
h i

þ Fadt ð5Þ

where fa represents the distribution function for the particle mov-
ing at a discrete velocity ea in a discrete direction specified by a.
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