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a b s t r a c t

In this paper, a hybrid lattice Boltzmann finite difference model based on the phase-field lattice
Boltzmann and finite difference approaches is proposed to model phase-change phenomena in a ternary
system. The system contains three immiscible incompressible fluids and the phase-change process hap-
pens at the interfaces of the fluids. Three distribution functions are used in the model; two of which are
used to track the interfaces among three fluids and the other one is employed to recover the hydrody-
namic properties (pressure and momentum). A sharp-interface energy equation is solved based on a
finite difference approach and the net heat flux at the interface is considered as the driving force for
the phase-change process. The proposed model is validated against available results and good agreement
is found.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Phase-change phenomena occur frequently in nature and many
engineering systems such as steam cycle in a steam power plant,
water purification, heating and cooling systems, just to name a
few. The growing presence of the phase-change phenomena (either
evaporation or condensation) indicates the importance of attaining
high performance thorough knowledge of the underlying physics.
Although experiments can reveal some aspect of a phase-change
process, it is impossible to investigate all involved parameters
and their effects on the process individually. As an alternative,
numerical simulations can overcome most of the limitations that
experiments face. In numerical modeling of multiphase (or multi-
component) fluid flows, major challenges include phase segrega-
tion, interfacial dynamics, and phase change. Generally, there are
two different approaches for simulating multiphase fluid flows:
interface-tracking approach (based on the Lagrangian description
of the interface motion) and interface-capturing approach.
Although the former enables predicting the exact location of
interface, the application of this approach is limited in the high
topological changes of interface. However, the latter has been
demonstrated to be applicable in strong interface deformations,
makes the approach to be more popular than the former. Interface
capturing approach can be divided into two categories:

sharp-interface methods such as volume of fluid (VOF) [1], level
set [2], and front tracking [3], and diffuse-interface methods such
as phase-field [4,5] and second gradient theory [6]. In the following
we present a brief overview on some binary phase-change models.

Based on the VOF method, Welch and Wilson [7] proposed a
model for simulating phase-change process and employed their
model for studying film boiling. However, the accurate calculation
of the interface curvature is difficult in their model. Son and Dhir
[8] proposed their phase-change model based on the level set
method. They simulated the nucleate boiling on a horizontal sur-
face. Because of implementing the level set method, their model
suffers from lack of mass conservation. Jamet et al. [6] presented
a phase-change model based on the second gradient theory. Due
to thermodynamically consistent behavior of this model, the
phase-change process and the topological changes of interface
can be determined by solving a single set of partial differential
equations (PDEs) without special treatment. It is worth mentioning
that based on the VOF and level set methods, some improved vari-
ants which combine these two methods have also been proposed,
e.g. the models proposed by Tomar et al. [9] and Guo et al. [10].

In the past two decades, the lattice Boltzmann method (LBM)
has emerged as a promising alternative to the traditional computa-
tional fluid dynamics (CFD) based on the Navier-Stokes (NS) equa-
tions for simulating fluid flows. By incorporating the interfacial and
intermolecular forces at the mesoscopic level, the LBM can readily
tackle multiphase multicomponent fluid flows [11,12] which are
difficult to handle by use of traditional CFD models. The LBM also
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demonstrates other advantageous over the traditional NS-based
solver models such as easy of handling complex boundaries [13]
and easy of parallelization [14].

So far, several phase-change lattice Boltzmann (LB) models have
been proposed which canmodel phase-change process occurring in
binary systems. Safari et al. [15] extended the phase-field LB model
proposed by Lee and Liu [16] to simulate evaporation phenomenon.
They modified the convection-diffusion Cahn-Hilliard (CH) equa-
tion to account for the phase-change process by introducing a
source term. They utilized a diffuse-interface approach for solving
the temperature field and the mass generated due to phase change
are distributed on all nodes located within the interfacial region.
Their model was successfully validated against the one-
dimensional Stefan problem for density ratio up to 1:1000. They
also simulated evaporation of a two-dimensional (2D) droplet by
assuming that the droplet temperature remains constant (satura-
tion temperature). Based on this model, several phase-change prob-
lems have been simulated [17,18]. Recently, Mohammadi-Shad and
Lee [19] extended a two-phase lattice Boltzmann method to model
liquid-vapor phase-change phenomenon using a sharp-interface
energy solver. Unlike Safari’s model [15], the proposed model in
Ref. [19] distributes the generated mass on nodes around the inter-
faces and also there is no need to define an ad hoc rule for phase-
field variable. The developed model was successfully validated for
the Stefan and interface sucking problems. An extensive review of
multiphase multicomponent LB models and phase-change LB mod-
els can be found in Ref. [20]. Most recently, Haghani et al. [21] pro-
posed a robust ternary LB model based on Lee’s binary model [16]
which can tackle both partial and total spreading systemswith high
density ratio of 1:1000. Their model was validated against available
data and good agreement was found. Based on this model, in this
study, we propose a hybrid lattice Boltzmann finite difference
model for simulation of phase change in a ternary system. The pre-
sent model takes advantageous of the sharp-interface energy solver
proposed in [19]. In spite of appearance of phase-change process in
ternary systems such as condensation on oil-infused rough surfaces
[22,23], with no claim of completeness, to the authors’ knowledge,
it is the first time that a phase-change process in a ternary system is
modeled numerically in the LB framework.

The rest of the paper is organized as follows. In Section 2 the
derivation of the Cahn-Hilliard equations in the presence of phase
change for a system consisting of three fluids is presented. Sections
3–6 present mathematical modeling for lattice Boltzmann equa-
tions (LBEs), volumetric mass flow rate, heat transfer equation,
and surface tension force, respectively. Numerical validation of
the model is presented in Section 7. Summary and concluding
remarks are reported in Section 8.

2. Ternary Cahn-Hilliard model in the presence of phase change

In this section, a phase-field model based on the Cahn-Hilliard
approach is presented for ternary fluids in the presence of phase
change. To meet this goal, the continuity equation for each fluid
is first presented and then the ternary Cahn-Hilliard equation pro-
posed in Refs. [21,24] is extended to take into account the phase-
change phenomenon which occurs at the interfaces. Consider a
domain X of three incompressible, immiscible fluids. Each fluid
of the mixture is distinguished by its phase-field variable (in other
words, volume fraction) /i ¼ ~qi=qi, where ~qi and qi are the local
and bulk densities of fluid i, respectively, and the local average

density is q ¼P3
i¼1~qi. The phase-field variables are restricted by

following constraint:

X3
i¼1

/i ¼ 1; 0 6 /1;/2;/3 6 1 ð1Þ

The continuity equation of each fluid can be written as [15]

@~qi

@t
þ $ � ni ¼ _m000

i ð2Þ

where t is the time, ni is the mass flow rate of fluid i, and _m000
i is the

volumetric source or sink of fluid i due to phase change. In the bulk
region, the mass flow rate is due to convection, i.e., ni ¼ ~qiuwhere u
is the volume average velocity of the flow. However, in the interfa-
cial region, another term comes into play as a result of smooth tran-
sition of phase-field variables. Diffusive mass flow in the interface is
indicated by �qiji, where ji is the volume diffusive flow rate which
is only related to the phase-field variable. Hence, the total mass
flow rate is ni ¼ ~qiu� qiji. Cahn and Hilliard [15] assumed that ji
is proportional to the gradient of the chemical potential, i.e.,
ji ¼ Mi$li, in which Mi and li are the mobility and the chemical
potential of fluid i, respectively. The chemical potential is defined
in Eq. (7). Substituting the total mass flow rate ni into Eq. (2) and
recalling the definition of /i, leads to the following phase-field
equations:

@/i

@t
þ $ � ðu/iÞ ¼ Mir2li þ

_m000
i

qi
i ¼ 1;2;3 ð3Þ

The chemical potential in Eq. (3) is derived based on free energy
functional F for a ternary system defined by [24]

F ¼
Z
X

E0 þ
X3
i¼1

3
8
nci j $/ij2

" #
dX ð4Þ

where E0 is the bulk free energy defined in Eq. (6), n is the interface
thickness which is assumed to be the same among all fluids, and ci
is an auxiliary coefficient related to surface tension coefficients
according to [24]

ci ¼ rij þ rik � rjk fi; j; kg 2 f1;2;3g ð5Þ
where rij is the surface tension coefficient between fluid i and j. The
bulk free energy E0 in Eq. (4) is [24]

E0 ¼ 12
n

c1
2
/2

1ð1� /1Þ2 þ
c2
2
/2

2ð1� /2Þ2 þ
c3
2
/2

3ð1� /3Þ2
h i

ð6Þ

and the chemical potential of each fluid is given by [21,24]

li ¼
4cT
n

X
j–i

1
cj

@E0

@/i
� @E0

@/j

 !" #
� 3
4
ncir2/i i ¼ 1;2;3 ð7Þ

where 3
cT
¼ 1

c1
þ 1

c2
þ 1

c3
.

We assume that only two of the three fluids take part in phase-
change process and the other fluid is neutral in terms of the phase
change. In this study, the phase change happens between fluids 1
and 3. Hence, Eq. (3) for each fluid can be written as:

@/1

@t
þ $ � ðu/1Þ ¼ M1r2l1 �

_m000

q1

@/2

@t
þ $ � ðu/2Þ ¼ M2r2l2

@/3

@t
þ $ � ðu/3Þ ¼ M3r2l3 þ

_m000

q3

ð8Þ

Since the phase-field variable are linked together with constraint
(1), only the transport equations for fluids 1 and 2 are needed to
be solved and the third phase-field variable is obtained via
/3 ¼ 1� /1 � /2. The summation of Eq. (8) leads to the divergence
of the velocity as follows

$ � u ¼ _m000 1
q3

� 1
q1

� �
ð9Þ
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