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a b s t r a c t

In this paper, a new numerical method, Element Differential Method (EDM), is developed for solving tran-
sient heat conduction problems with variable conductivity. The key point of this method is based on the
direct differentiation of shape functions of isoparametric elements used to evaluate the geometry and
physical variables. A new collocation method is proposed for establishing the system of equations, in
which the governing differential equation is collocated at nodes inside elements, and the flux equilibrium
equation is collocated at interface nodes between elements and outer surface nodes of the problem.
Attributed to the use of the Lagrange elements that can guarantee the variation of physical variables con-
sistent through all elemental nodes, EDM has higher stability than the traditional collocation method. The
other main characteristics of EDM are that no variational principle or a control volume are required to set
up the system of equations and no integrals are included to form the coefficients of the system. Based on
the implicit backward differentiation scheme, an unconditionally stable and non-oscillatory time march-
ing solution scheme is developed for solving the time-dependent system equations. Numerical examples
are presented to demonstrate the accuracy and efficiency of the proposed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Transient heat transfer analysis is of great importance in many
practical engineering areas [1–3]. The solution techniques to tran-
sient heat conduction problems are mainly based on analytical and
numerical methods. The analytic method is accurate, but only
available for isotropic homogeneous problems with simple geome-
tries and boundary conditions, and, therefore, has limited applica-
tion. The numerical method is a very flexible and robust way to
solve complex heat conduction problems. The commonly used
numerical methods can be classified into four types: the finite ele-
ment method (FEM) [4,5], the finite volume method (FVM) [6,7],
the boundary element method (BEM) [2,8] and meshless methods
[9,10]. Compared to FEM and FVM, BEM is very robust for solving
the heat conduction problem, since it only needs the discretization
of the problem boundary into elements, rather than the whole
domain, thus reducing the dimension of the problem by one [8].
However, BEM faces a critical challenge when solving non-linear
[3,11], non-homogeneous [2] and transient [12–15] problems,
since usually there are domain integrals concerned in the resulting
integral equations, thus making BEM lose its unique advantage of

boundary only discretization. To avoid this deficiency, some meth-
ods of transforming domain integrals into equivalent boundary
integrals are developed and have been frequently used. In these
methods, the dual reciprocity method (DRM) developed by Brebbia
[8,16] is extensively employed. However, DRM requires particular
solutions to basis functions, which restricts its application to com-
plicated problems. Recently, a new transformation method, the
radial integration method (RIM), has been proposed by Gao
[17,18], which not only can transform any complicated domain
integrals to the boundary in a unified way without using particular
solutions, but also can remove various singularities appearing in
the domain integrals. For solving transient heat conduction prob-
lems, Yang and Gao [19] developed a new boundary element anal-
ysis approach based on RIM, in which RIM is used to clear up the
domain integral associated with the time derivative of tempera-
tures, and the radial integral is evaluated numerically. Then a
new and simple boundary-domain integral equation is presented
for solving nonlinear [20] and transient nonlinear [21] heat con-
duction problems with temperature-dependent conductivity of
materials. By considering that the numerical evaluation of the
radial integrals is very time-consuming, Yang and Gao [22–24]
developed a set of new analytical expressions for evaluating radial
integrals appearing in the computation of several kinds of variable
coefficient problems using the radial integration boundary element
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method (RIBEM). Through employ of the derived analytical expres-
sions, the computational efficiency can be increased considerably.

Recently, a new robust method, element differential method
(EDM) [25,26], is proposed for solving general heat conduction
problems [25], elastic mechanics and thermal stress problems
[26] based on the use of isoparametric elements as used in the
standard FEM [4]. A set of explicit formulations of computing the
first and second order spatial derivatives are derived for 2D and
3D problems. These formulations are presented for shape functions
of elements and therefore can be used to any physical variables’
differentiation. Since EDM can use high order isoparametric ele-
ments to compute the spatial derivatives, the computational accu-
racy in heat flux is higher than the frequently used FVMmethod. In
this paper, a new type of element differential method is developed
for solving transient heat conduction problems with variable con-
ductivity for the first time. Without the complexity of solving the
transient heat conduction BEM as before, the most important char-
acteristic of the proposed method is that the derived spatial deriva-
tives can be directly substituted into the governing equations and
the heat flux equilibrium equations to form the final system of
algebraic equations. So EDM is very easy to be coded in dealing
with transient heat conduction engineering problems with compli-
cated governing equations and boundary conditions.

2. Governing equations for non-homogeneous transient heat
conduction problems

The governing equation for transient heat conduction problems
in isotropic non-homogeneous media can be expressed as follows:
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The boundary conditions of the problem are

TðxÞ ¼ f ðxÞ; x 2 C1 for Dirichlet boundary condition ð2aÞ
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for Neumann boundary condition ð2bÞ

qnðxÞ ¼ �kij
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ni ¼ hðxÞðTðxÞ � T1Þ; x 2 C3

for Robin boundary condition ð2cÞ
where xi is the i th component of the spatial coordinates at point
x ¼ ðx1; x2; . . . ; xndimÞ, ndim the dimension of problems, k(x) the ther-
mal conductivity, T(x) the temperature, and Q(x) the heat-
generation rate.

3. Derivatives of elemental shape functions with respect to
global coordinates

Any variables varying over an isoparametric element can be
represented in terms of their nodal values of the element [4]. For
example, the spatial coordinates and temperature can be interpo-
lated as

xi ¼ Naxai ; T ¼ NaT
a ð3Þ

where xai , Na and Ta are the values of coordinates, shape function
and temperature at node a, respectively, and the repeated index a
represents the summation over all nodes. To numerically compute
the partial derivatives appearing in the governing Eq. (1) and
boundary conditions (2), the analytical expressions for the first
and second partial derivatives need to be derived. From Eq. (3) it
follows that
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It can be seen that Na are the explicit functions of intrinsic coor-
dinates n ¼ ðn1; n2; . . . ; nndimÞ, thus
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where ½J� ¼ ½@x=@n� is the Jacobian matrix mapping from the global
coordinate system xi to the intrinsic coordinate system nj, and
@nl=@xk can be determined by the following matrix relationship [4]:
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The isoparametric elements used in FEM [4,5] have excellent
features in geometry expression and physical variable interpola-
tion. Referring to Ref. [25], the first and second partial derivatives
needed in solving PDEs can be determined analytically by using
the shape functions of isoparametric elements and a system of
equations can be formed by substituting these spatial derivatives
into the governing equation and boundary conditions.

4. Assembling system of equations from governing equations
and boundary conditions

When solving a boundary value problem managed by a partial
differential equation using EDM, the computational domain needs
to be discretized into a series of isoparametric elements and nodes
as done in FEM. The first and second spatial derivatives of physical
variables can be calculated using Eqs. (4)-(6). Based on this, a sys-
tem of equations can be directly formed by substituting Eq. (4) into
the governing equation for internal nodes and boundary conditions
for boundary nodes.

4.1. Setting up equations for internal nodes of elements based on the
governing differential equation

For nodes located within an element, the governing equation (1)
should be satisfied. To facilitate the use of EDM, Eq. (1) can be writ-
ten as
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Substituting Eq. (4) into Eq. (9) leads to
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where n is the intrinsic coordinate at the node inside the element.
The term @kij=@xi in Eq. (10) can be calculated through direct differ-
entiation, if the analytical expression of the heat conductivity kij is
given, otherwise the following expression can be used to compute
its value.
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