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a b s t r a c t

In this article, a coupled Volume Penalization-Thermal Lattice Boltzmann method is proposed to solve the
thermal flow problem. The temperature Dirichlet boundary condition of the temperature field is ensured
by introducing an external thermal penalization heat source term into the energy equation. Coupled with
the Lattice Boltzmann-Volume Penalization method, which is used to simulated athermal flow past
obstacles, the thermal flow problem can be solved. Besides, performing the Volume Penalization-
Thermal Lattice Boltzmann method on a certain point, only the variables of this point are needed, which
means the present method can be conducted parallelly. To verify the present method, the heat transfer
between two concentric circular cylinders experiment is carried out firstly, in which the accuracy of
the present method is also studied. Then natural convection between two concentric circular cylinders
and between a cold square outer and a hot cylinder inner is performed to verify the present method fur-
ther. To validate the ability of the method to solve the forced convection and mixed convection, the flows
past a heated circular cylinder and the mixed convection of a heated rotating cylinder in a square enclo-
sure are conducted. Good agreements between the present results and those in the previous literatures
are achieved.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Lattice Boltzmann method, as an alternative to the traditional
Navier-Stokes (N-S) equation solver, has been adopted to solve
the problem relating to the interaction between fluid flows and
obstacles widely [1]. The simplicity in coding, parallel and explicit
calculation procedure are its three main advantages which con-
tribute to its popularity. In the procedure of the solving the inter-
action between the fluid flows and the obstacles, especially when
the boundary of the obstacles are complex, treating the obstacle
boundaries is an extremely important point. Just like in the tradi-
tional N-S equation solvers, two main techniques: body-fitted grid
method and the immersed boundary method are adopted to solve
the interaction between the fluid flows and the obstacles in the
Lattice Boltzmann method.

For the body-fitted grid method, generating a body-fitted grid is
the first and important step, during which the structured and
unstructured grids are frequently used. But this step is of great
expense, especially when the some complex boundaries are
involved. Even with simple boundaries, it is not easy to create a

high quality body-fitted grid. When the boundary of the obstacle
moves or changes, the body-fitted grid should be regenerated
every step and the variables on the last grid should be also interpo-
lated to the new grid, which is prohibitive. Besides, the order of
accuracy on the structured and unstructured grids is lower than
that on the uniform Cartesian grids [2].

Compared with the body-fitted grid method, the immersed
boundary method, proposed by Peskin [3], can be easily imple-
mented. In the immersed boundary method, an external forcing
term is introduced to the momentum equations to reflect the
boundary effect of obstacles on the fluid flows, which is the extre-
mely bright spot of immersed boundary method. For the modified
momentum equations, there is no inner boundary, which means
the modified momentum equations can be solved on a fixed uni-
form Cartesian grid. As a result, the generation and re-generation
of the body-fitted grid are unneeded, even when the boundary of
the obstacle moves or changes. The dynamics of the obstacles are
represented by a Lagrangian grid. The information and variables
on these two grids are related to each other by a discrete delta
function interpolation. Interpolating the velocity on the boundary
based on the velocity field of the Cartesian grid and spreading
the force density to the Cartesian grid points near the boundary
by using the delta function are two main steps in the immersed
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boundary method. After the immersed boundary method was
firstly incorporated into the Lattice Boltzmann method by Feng
and Michaelides [4], many types of the coupled immersed bound-
ary method and Lattice Boltzmann method have been developed
for the incompressible viscous fluid flows past obstacles such as:
the direct-forcing IBM-LBM [5], velocity correct-based IBM-LBM
[6], momentum exchange IBM-LBM [7] and so on. But here another
interesting immersed boundary method is focused: the Volume
Penalization (VP) method.

The Volume Penalization method, proposed by Arquis and Cal-
tagirone [8], was incorporated into LBM by Benamour [9]. In the
VP, the obstacles are considered as a porous medium with extre-
mely small permeability. The boundary of the obstacle is modeled
on the fixed grid by a mask function. Actually, the Lagrangian grid
in the VP is part of the fixed Cartesian grid which is marked by the
mask function. So each point of the Lagrangian grid coincides with
a certain point of the fixed Cartesian grid. Compared with the
direct forcing IBM and the velocity correction IBM, there is no need
to interpolate the velocity at the boundaries and to spread the
force density to the Cartesian grid points near the boundaries by
the delta function. So performing the VP procedure on a certain
Lagrangian grid point just needs the variables on a Cartesian grid
point with which the Lagrangian grid point coincides, which means
the VP procedure can be conducted parallelly. Taking the paral-
lelizability of the LBM into consideration, the whole VP-LBM can
be conducted parallelly. Besides, the solution of the penalized
N-S equations tends towards the exact solution of the N-S equa-
tions imposing no-slip boundary conditions with the penalization
parameter approaching zero [10–12]. Under the help of the forcing
term proposed by Guo [13], the VP is incorporated into LBM
successfully to simulate flows past obstacles [14].

In this article, the volume penalization method coupled with
Lattice Boltzmann is applied to solve the heat transfer problem.
The heat transfer problem is a very interesting issue which has
attracted many researchers and has been used in many areas, such
as the latest reported research micropolar fluids [15], fluid flow in
porous enclosure [16,17] and thermal flows under the control of
electric field [18–20]. Coupled with the Thermal Lattice Boltzmann
method (TLBM), the immersed boundary methods mentioned
above have been also used to solve the heat transfer and convec-
tion problem [21–23]. Besides, M. Sheikholeslami and his co-
workers have adopted the Thermal Lattice Boltzmann to study
the natural convection heat transfer problems under the magnetic
field [24], which has opened a new area where the Thermal Lattice
Boltzmann can be used. An external thermal penalization heat
source term is introduced into the energy equation to enforce the
temperature field at the boundaries satisfied the temperature
Dirichlet boundary condition. The modified energy equation is
solved by an another population of Lattice Boltzmann model: Ther-
mal Lattice Boltzmann method. Coupled with modified N-S equa-
tion solved by the Lattice Boltzmann method, the proposed
method Volume Penalization-Thermal Lattice Boltzmann (VP-
TLBM) is used to solve the thermal flow problem. To verify the pro-
posed VP-TLBM and study the accuracy of the proposed method,
the heat transfer between two concentric circular cylinders is con-
ducted firstly. Then the natural convection between two concentri-
cally placed horizontal circular cylinder and between a cold square
outer and a hot circular cylinder inner is chosen as the experiment
to verify the proposed method further.

The rest of this article is arranged as follows. In Section 2, the
Lattice Boltzmann-Volume Penalization method firstly introduced
briefly. Then the proposed VP-TLBM is introduced in details. The
whole computational procedure is given in this section as well.
In Section 3, the numerical experiments and the comparison of
the results are given. Some concluding remarks and recommenda-
tions for the future work are presented in Section 4.

2. Mathematical and numerical formulation

In this section, the Lattice Boltzmann-Volume Penalization is
introduced briefly. Then the proposed Volume Penalization-
Thermal Lattice Boltzmann method is introduced in details. Finally,
the whole computing procedure is given.

2.1. The Lattice Boltzmann-Volume Penalization method

Let us take the fluid-solid interaction (FSI) between incompress-
ible viscous fluid and rigid boundary into consideration. The
dynamics of the fluid can be governed by the following incom-
pressible Navier-Stokes equation:

@u
@t

þ u � ruþ 1
q
rp ¼ lr2uþ f ð1Þ

r � u ¼ 0; ð2Þ
where u is the velocity of the fluid, l is the dynamic viscosity, q is
the density, p is the pressure and f is the body force. The no-slip
boundary conditions on the rigid boundary domain XO in the fluids
can be described as:

uj@XO
¼ UO; ð3Þ

where @XO is the boundary of the obstacles and UO is the velocity of
the obstacles. The computational domain is shown in Fig. 1. XF is
the fluid domain. The union of these two domains X ¼ XF [XO is
the entire domain.

The Dirichlet problem Eqs. (1)–(3) can be solved by the Volume
Penalization method [10,11]. In the Volume Penalization method,
the solid obstacles are modeled as porous media. By adding a
penalization term on the velocity, the momentum Eq. (1) is modi-
fied as:

@u
@t

þ u � ru ¼ � 1
q
rpþ lr2uþ f � v x; tð Þq

g
u� UOð Þ; ð4Þ

where

v x; tð Þ ¼ 1 x 2 XO

0 other

�
ð5Þ

is the mask function used to describe the obstacles’ geometry and
g� 1 is the penalization parameter. It can be seen that there is
no Dirichlet boundary condition in Eq. (4). The solution of the

Fig. 1. The computational domain of boundary and fluid.
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