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a b s t r a c t

The existence of non-Fourier heat conduction is known for a long time in small and low temperature sys-
tems. The deviation from Fourier’s law has been found at room temperature in heterogeneous materials
like rocks and metal foams (Both et al., 2016; Ván et al., 2017). These experiments emphasized that the
so-called Guyer-Krumhansl equation is adequate for modeling complex materials. In this paper an ana-
lytic solution of Guyer-Krumhansl equation is presented considering boundary conditions from laser
flash experiment. The solutions are validated with the help of a numerical code (Kovács et al., 2015)
developed for generalized heat equations.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The existence of non-Fourier heat conduction under various
conditions is experimentally proved in several different ways. First,
the Cattaneo equation, also known as Maxwell–Cattaneo-Vernotte
equation (MCV) [4–8]

sq@ttT þ @tT ¼ a@xxT; ð1Þ

is used to describe the dissipative wave form of heat propagation
called second sound. Here, sq is the relaxation time, a stands for
the thermal diffusivity, @t denotes the time derivative and @xx

denotes the second spatial derivative in one dimension. It is the
simplest extension of Fourier’s law and there are several different
theorems in the literature which lead to this type of hyperbolic gen-
eralization [7–12,14,3,15–17]. The existence of second sound was
predicted by Tisza and Landau [18,19], earlier than the experimen-
tal discovery. Then Peshkov managed to measure it in superfluid He
[20] and enhanced the researches in that respect. Later on, several
new ideas have developed how to measure similar phenomena in
different materials. One of the most important result is related to
Guyer and Krumhansl who derived the so-called window condition,
significantly supporting the measurement of second sound in solids
[21].

The next extension of Fourier’s equation bears their names,
called Guyer-Krumhansl (GK) equation [22–24],

sq@ttT þ @tT ¼ a@xxT þ j2@txxT; ð2Þ

where j2 is the dissipation parameter [3], strongly related to the
mean free path from the aspect of kinetic theory [12]. It contains
the MCV Eq. (1), however, it is a parabolic type model according
to the classification of [13] and is able to recover the solution of
Fourier equation when j2=s ¼ a holds, called Fourier resonance
[1,2,25]. Despite of the disadvantageous infinite propagation speed
of parabolic models, it is still a valid and thermodynamically
consistent realisation of non-Fourier heat conduction at room
temperature [1,2,26].

Regarding the experiments, one should mention the ballistic-
type heat conduction measured by Jackson et al. [27–30] in NaF
crystals and modeled by several authors [31–34]. The most recent
one can be found in [35] where quantitative agreement is obtained
between the theory and experiments. The theory is based on non-
equilibrium thermodynamics with internal variables and Nyíri
multipliers [3,15,36].

The experimental success of measuring the second sound and
the universal theory of non-equilibrium thermodynamics has
motivated the researchers to find non-Fourier heat conduction in
wave form described by the MCV Eq. (1) at room temperature.
For example, such an endeavor is related to the experiments of
Mitra et al. [37] where a frozen meat is used to find similar phe-
nomenon. Unfortunately, no one was able to reproduce these
experimental results and the measurements of Mitra et al. are
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widely criticized [38–40]. However, it turned out that the GK equa-
tion could be the relevant measurable extension of Fourier’s law,
the related non-Fourier effects are measured several times in dif-
ferent materials [1,2]. In many other cases the dual phase lag
model is considered also as an adequate generalization [41–45],
however, this model is contradictory to basic physical principles
[26] and its validity is questionable [46–52].

All the aforementioned experiments are the heat pulse type, the
underlying principle is the same, only the equipment is different. It
is a standard method to measure the thermal diffusivity and is
used widely in engineering practice. The importance of Guyer-
Krumhansl Eq. (2) in the evaluation of such experiments indicated
the need to find an analytic solution.

The work of Zhukovsky has to be mentioned here [53–56].
Recently, Zhukovsky obtained an exact solution of GK equation
using operational method for infinite spatial domain. However, ini-
tial conditions are different from studied in this paper. Neverthe-
less, these results are still far from applicability for evaluating
experiments. Therefore, the goal of this paper is to complement
the results of the aforementioned papers to be more applicable
for real experimental setup like described below.

2. Experimental setup and boundary conditions

Measurements finding non-Fourier heat conduction in hetero-
geneous materials are performed at room temperature as it is
described in detail in the papers [1,2] have the following setup,
see Fig. 1.

The front side boundary condition depicts the heat pulse which
excites the heterogeneous sample. The pulse has a finite length,
given as tp ¼ 0:01 s [1,2]. The exact shape of the pulse has not been
taken in account in [1,2] during the evaluation process, neverthe-
less, its length is critical and greatly influences the solution
[57,58]. As it is highlighted and applied in [1–3,59], the following
function is considered to model the heat pulse,

qðx ¼ 0; tÞ ¼ qmax 1� cos 2p � t
tp

� �� �
if 0 6 t 6 tp;

0 if t > tp;

(

that is, the front side boundary condition is given by prescribing the
heat flux in time, here qmax is the amplitude of the signal. When the
experimental results are evaluated, the cooling on rear boundary
has to be considered: qðx ¼ L; tÞ ¼ hðT � T1Þ, where h is the heat
transfer coefficient and T1 is the constant ambient temperature.

In spite of the fact that it is crucial to model these effects, in the ana-
lytic solution it is neglected to simplify the mathematical problem.
Thereby adiabatic condition is applied to the rear side for every
time instant: qðx ¼ L; tÞ ¼ 0. Regarding the initial conditions, all
the time derivatives are zero at the initial state and the sample is
in equilibrium with its environment, i.e.:

Tðx; t ¼ 0Þ ¼ T0; qðx; t ¼ 0Þ ¼ 0; @tTðx; t ¼ 0Þ ¼ 0;
@tqðx; t ¼ 0Þ ¼ 0: ð3Þ

3. Dimensionless quantities

In order to ease the solution of GK equation dimensionless
quantities are used (see [3] for details). From now on, the same for-
malism is applied, that is, the following parameters are introduced,

t̂ ¼ at
L2

with a ¼ k
qc

; x̂ ¼ x
L
;

bT ¼ T � T0

Tend � T0
with Tend ¼ T0 þ

�q0tp
qcL

;

q̂ ¼ q
�q0

with �q0 ¼ 1
tp

Z tp

0
q0ðtÞdt; ð4Þ

where L is the length of the sample, k;q and c are the thermal con-
ductivity, mass density and specific heat, respectively. The time
averaged heat flux �q0 is used to define the equilibrium temperature
Tend. The material parameters converted with

ŝD ¼ atp
L2

; ŝq ¼ asq
L2

; ĵ ¼ j
L
; ð5Þ

where ŝD stands for the dimensionless heat pulse length and ŝq
denotes the relaxation time related to the heat flux. For the sake
of simplicity, the notation ‘‘hat” is omitted and let us restrict our-
selves only for dimensionless quantities. Using these formalism
the GK-type heat equation reads as

sq@ttT þ @tT ¼ @xxT þ j2@txxT; ð6Þ
which can be decomposed into two equations containing the bal-
ance equation of internal energy

sD@tT þ @xq ¼ 0; ð7Þ
and the GK-type constitutive equation is:

sq@tqþ qþ sD@xT � j2@xxq ¼ 0: ð8Þ
Since the boundary conditions are prescribed as a given heat

flux in time it is suitable to eliminate T from the Eqs. (7) and (8):

sq@ttqþ @tq ¼ @xxqþ j2@txxq: ð9Þ
After obtaining the solution for qðx; tÞ one can use Eq. (7) to

integrate @xq with respect to time and calculate Tðx; tÞ. Applying
dimensionless quantities, the heat pulse boundary condition at
the front side reads as

qðx ¼ 0; tÞ ¼ q0ðtÞ ¼
1� cos 2p � t

sD

� �� �
if 0 6 t 6 sD;

0 if t > sD;

(

and for the rear side qðx ¼ 1; tÞ ¼ qLðtÞ ¼ 0 holds together with the
dimensionless initial conditions Tðx; t ¼ 0Þ ¼ 0 and
qðx; t ¼ 0Þ ¼ 0; @tTðx; t ¼ 0Þ ¼ 0; @tqðx; t ¼ 0Þ ¼ 0.

4. Solution method

According to the front side boundary condition it is reasonable
to split the solution into two sections in time. The first one goesFig. 1. Arrangement of the experiment, original figure from [2].
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