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a b s t r a c t

This paper proposes a modified Lie-group shooting method to solve multi-dimensional backward heat
conduction problems under long time spans. The backward heat conduction problem is renowned for
being ill posed because the solutions are generally unstable and highly dependent on the given data.
For dealing with those problems, the Lie-group shooting method is one of the most powerful tools to find
the unknown initial condition for the backward heat conduction problems in the time domain. In previ-
ous studies, the Lie-group shooting method uses the time and spatial semi-discretization technique to
change the integration direction of numerical schemes and then increase the time span. However, the
conversional Lie-group shooting method cannot get to the core of divergence problems for the backward
heat conduction problems, especially the increased computational time. The main reason is that a real
single-parameter Lie-group element occurs at zero, and a generalized midpoint Lie-group element is
not equivalent to the single-parameter Lie-group element in the Minkowski space. Hence, to overcome
the above problems, the relationship of the initial condition, the final condition and a real single-
parameter r is assessed. According to the constraint condition of the initial and final condition, a real
single-parameter r depends on the time span to maintain the numerical convergence. Again, in order
to preserve the same Lie-group property in the time direction, the high-order Lie-group scheme based
on the generalized linear group in Euclidean space is introduced, which concurrently satisfies the con-
straint of the cone structure, the Lie-group and the Lie algebra at each time step. The accuracy and effi-
ciency are validated, even under noisy measurement data, by comparing the estimation results with
existing literature.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In many engineering application fields, it is important to find
the temperature history or physical quantities from known mea-
surement data. If the boundary, the initial conditions, the heat
source-sink terms, and the physical properties of the material are
specified, then this leads to a well-posed problem that may easily
be dealt with by various numerical methods. This is referred to as
the direct heat conduction problem (DHCP). However, in many
practical situations, it is not always possible to specify the bound-
ary condition, the initial temperature, the source-sink terms, and/
or the material properties. This is referred to as the backward heat
conduction problem (BHCP). Mathematically, BHCPs are classified
as ill-posed problems because the solution is unstable for the given
input data (see Payne [1]).

Numerical methods adopted for backward problems are usually
implicit because the explicit schemes are apparently not very

effective up to now. As mentioned by Ames and Epperson [2], ill
condition from a numerical point of view are necessary for itera-
tive methods, and the problem must be regularized before any
approximation can be constructed. Obviously, an ill-posed problem
is impossible to solve using classical numerical methods and
requires special techniques to be employed. Several methods have
been proposed in the literature to address these problems. For
example, Han et al. [3] used the boundary element method
(BEM) combined with a minimal energy technique to resolve the
homogeneous BHCP. Lesnic et al. [4], Mera et al. [5,6], and Jourh-
mane and Mera [7] used the iterative BEM for homogeneous
BHCPs. However, these approaches still cannot avoid the effect of
ill condition when increasing discrete boundary nodes. Regulariza-
tion approaches [8,9] have been widely proposed and applied,
including the conjugate gradient method with an adjoint equation
[10–12], the regularized solution using a quasi-Newton method,
and the regularized solution using the genetic algorithm (GA)
method. Muniz et al. [9] adopted Tikhonov regularization, the
maximum entropy principle, and truncated singular value
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decomposition to solve homogeneous BHCPs and obtained promis-
ing results. Mera [13] developed the method of fundamental solu-
tions (MFS) and combined the method with the standard Tikhonov
regularization technique to address BHCPs. These approaches with
the regularization technique can obtain an approximate solution,
but they still cannot to overcome increasing the computational
time span and discrete boundary nodes. Very recently, the singular
boundary method (SBM), which is a strong-form boundary colloca-
tion method, has been widely applied to deal with inverse prob-
lems. For example, Wang et al. [14–16] applied the SBM in
conjunction with several regularization techniques to address 2D
thin-walled structures and the 3D Cauchy problems of steady heat
conduction. Li et al. [17] derived the explicit error bounds of the
SBM and illustrated the physical meaning of the origin intensity
factor in the SBM and BEM. Further, Li and Chen [18,19] applied
the modified SBM to address the multi-dimensional wave prob-
lems and active noise control. The SBM can avoid the ill condition
problem of the conventional iterative schemes and obtain the
stable solution using very few boundary nodes and small CPU time.

In recent years, there has been a substantial development in the
area of the geometric integration of the non-linear ordinary differ-
ential equations (ODEs) evolving on the Lie groups, and more gen-
erally on the homogeneous space. Basically, there are two principal
approaches to accomplish the task. The first one is to use the clas-
sical numerical scheme to approximate the solution at a given
point and then to project this result on the manifold. The second
approach consists of the construction of numerical methods whose
solutions automatically evolve on a given manifold. Therefore, it is
important to derive the numerical method whose solutions must
evolve on the manifold. To preserve the solutions of the numerical
method evolved on the manifold, Lie groups play a key role. By
sharing the geometry and invariance with the ODEs, the numerical
methods are more accurate and more effective than conventional
ones. In order to retain the invariance of the underlying dynamical

system in the Minkowski space, Liu [20] has developed numerical
method, which is called the group preserving scheme (GPS), to
integrate the augmented dynamical system of ordinary differential
equations that evolve on a matrix Lie-group SOoðn;1Þ. Liu [21]
proved that the implicit and explicit Lie-group schemes based on
GLðn;RÞ are equivalent to the GPS in Minkowski space. There are
three types of properties in the GPS: cone construction, Lie algebra,
and group properties. The past studies [22–25] clearly indicated
that the Lie-group methods not only produce an improved qualita-
tive behaviour but also allow for a more accurate long term inte-
gration than that offered by the general purpose methods.

Recently, Liu et al. [26,27] applied the backward GPS to address
homogeneous BHCPs. Chang and Liu [28] applied the BGPS to deal
with multi-dimensional backward wave problems. However, a
BGPS cannot efficiently avoid to numerical errors propagation in
integration direction of the numerical schemes. Chang et al. [29]
and Chang et al. [30] proposed the Lie-group shooting method
(LGSM) for the quasi-boundary regularization of multi-
dimensional BHCPs. However, the LGSM with the regularization
parameter cannot avoid numerical divergence when increasing
the computational time and discrete element numbers. Liu [31]
employed a spatial-direction LGSM to address the 1D BHCP, while
Liu and Chang [32] used the GLðn;RÞ scheme to recover an
unknown initial temperature for a non-linear heat conduction
equation. Although changing the integration direction of numerical
schemes can increase the computational time, the numerical
scheme is limited only for the 1D BHCPs. From the above numerical
results, the solution obtained using the LGSM still suffers numeri-
cal divergence when the time space length increases. The main rea-
son is that a real single-parameter Lie group element GðtfÞ occurs
at zero, and a generalized midpoint Lie-group element
GðrÞ–Gðtf Þ. Chen [33] applied the fictitious time integration
method (FTIM) to solve the multi-dimensional BHCPs and assessed
the relation of the initial and final condition to achieve one-step. To

Nomenclature

A a vector
b a vector
am the coefficient defined in Eq. (21)
bm the coefficient defined in Eq. (21)
A the coefficient matrix
f an n-dimensional vector field
u an n-dimensional vector field
u0 initial temperature vector
uf temperature vector at final time tf
û :¼ ru0 þ ð1� rÞuf
t̂ :¼ ð1� rÞtf
R the set of real numbers
Rn an n-dimensional Euclidean space
X a space-time domain
D a bounded domain in Rn

� a dyadic operation
glðn;RÞ a real Lie algebra
GLðn;RÞ the general linear group
In an n-dimensional unit matrix
G an element of a Lie group
u the temperature distribution
t a temporal coordinate
x a spatial variable
y a spatial variable
z a spatial variable
t time
Dx the lattice spacing length of x

Dy the lattice spacing length of y
Dz the lattice spacing length of z
Dt a time increment
s iteration number
Êm the n-dimensional vector field defined in Eq. (26)
tf the final time
RðiÞ random numbers
r the noise level

Greek symbols
e a given stopping criterion
Km the variable coefficient defined in Eq. (14)
Hm the variable coefficient defined in Eq. (23)
h intersection angle of uf � u0 and u0
ub given boundary data
uf given final data
u0 given initial data

Subscripts and superscripts
i spatial grid numbers in the x direction
j spatial grid numbers in the y direction
k spatial grid numbers in the z direction
m grid number in the time direction
f final
0 initial
T transpose
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