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a b s t r a c t

Ice formation in metastable, super-cooled droplets, which are frequently found in the atmosphere,
influences the appearance and characteristics of atmospheric clouds significantly, for example regarding
precipitation. Its numerical investigation can provide deep insight into the underlying physical
mechanisms and supports the deduction of models that describe these processes on the microscale; those
models are required for a description of the macrophysical system. However, even the processes on the
microscale span about four orders of magnitude. A semi-analytical sub-scale model based on similarity
solutions is thus deduced in order to narrow the gap between the different scales describing the initially
spherical ice growth in a super-cooled droplet, which can be reduced to a radially symmetric, but highly
non-linear Stefan-type problem. All relevant physical effects, e.g. the reduction of the melting tempera-
ture, the expansion of the water phase due to the decrease of density upon solidification and high degrees
of supercooling, are taken into account in contrast to classical approaches. The maximum relative error in
terms of the freezing time, which is given explicitly as well as the temperature fields, is less than 10% at a
degree of supercooling of 35 K and decreases rapidly as the ambient temperature increases.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One important aspect of freezing processes in nature is the for-
mation of ice crystals in clouds in our atmosphere. According to
[1,2], the ice formation determines the appearance of clouds, their
dynamic behavior, stability and characteristics such as the amount,
beginning and duration of precipitation. Cloud ice may exist, for
example, at the top of cumulonimbus clouds and cirriform clouds,
as pointed out in [3]. The ice particles form either by deposition of
water vapor or by freezing of super-cooled liquid droplets [1,4].

The present paper focuses on the initial freezing of super-cooled
droplets that are liquid at temperatures below their equilibrium
melting point and thus exist in a metastable state [4,5]. Crystalliza-
tion of super-cooled water will not start unless a solid ice cluster of
critical size has been formed by nucleation [6]. Supercooled water
nucleates homogeneously in the absence of foreign insoluble sub-
stances due to fluctuations in quantities such as density, pressure
and temperature, which are caused by the perpetual formation
and disintegration of small ice clusters. In contrast, heterogeneous
nucleation is initiated by ice forming nuclei like aerosols at lower
degrees of supercooling [7]. According to data on nucleation rates

from literature [9] and the concentration of ice-forming nuclei
per volume, the appearance of a second nucleus within the
super-cooled droplet is very unlikely during the relevant time
span. Furthermore, the ice growth of the initial nucleus impedes
the formation of a second one due to the release of latent heat.

The significance of ice formation in super-cooled droplets,
which are frequently found in the atmosphere [7], has already been
stated in the year 1933 by T. Bergeron [8] who hypothesized that
most heavy rainfall from super-cooled clouds requires the forma-
tion of ice. According to [9], global precipitation is predominantly
produced by clouds containing an ice phase. However, knowledge
about its formation still remains incomplete, as also stated in [10].
Understanding these processes on droplet scale and linking them
to larger scales is of crucial necessity for weather and climate mod-
eling [11] and has been an important field of research during the
last decades. However, according to [12], cloud models lack
detailed parameterizations for the ice initiation processes in cirrus
clouds. In [2] the uncertainties in precipitation models that arise
due to poor knowledge of the ice initiation processes in clouds
and their implications for climate studies are mentioned. An
improvement in the description of ice formation processes in
clouds is demanded in [1]. They also emphasize the significance
of numerical models in studying cloud processes due to limitations
in experimental investigations. A contribution to finding answers
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to some of these questions is Direct Numerical Simulation (DNS) of
the ice formation in a super-cooled droplet. The size of a typical
cloud droplet is in the order of micrometers, while the nucleus,
which starts to grow inside this droplet, has a diameter of a few
nanometers only. The resolution of at least four orders of magni-
tude in great detail is impossible today due to a limit in available
computational power. We thus derive a semi-analytical sub-scale
model that can be easily implemented into a numerical code and
narrows the gap between the processes on nanometer and droplet
scale. It represents the growth of a single initial ice particle in the
droplet’s center. Following the work of [13] this initial ice particle
remains spherical up to a threshold radius because instabilities on
the surface are damped. According to [14], cloud droplets with
diameters in the order of micrometers are spherical, too. The prob-
lem that is referred to as Stefan problem can thus be reduced to a
freezing problem with radial symmetry and is described in more
detail in the following section. No exact solution to this problem
seems to exist according to e.g. [15]. Approximate solutions to Ste-
fan problem frequently found in literature ([16–21] and others)
base on perturbation methods. The authors of the present paper
also presented a solution to the moving ice-water interface in a
super-cooled liquid droplet using perturbation methods [22]. In
general, the accuracy of perturbation solutions decreases with an
increase of the perturbation parameter. This parameter in Stefan
type problems represents the supercooling. Perturbation methods
are thus applicable only if the supercooling is low. Hence, the per-
turbation analysis in [22] has only been used as a starting solution
to a subsequent iterative numerical scheme in order to reduce
computational time.

The solution we suggest in the following can also be applied to
ice growth in metastable droplets with very high supercooling. In
contrast to other solutions presented in literature, it involves all

physical aspects that are identified as relevant to the problem
under consideration in Section 3. The solution is given explicitly
in terms of a temperature field in ice and water as well as in terms
of the freezing time. It can be thus implemented directly into any
numerical code that is used for the simulation of the subsequent
dendritic ice growth.

The mathematical formulation of the Stefan problem of interest
is given in Section 2. In Section 4 we present an approximative ana-
lytical solution to the problem that accounts for all important
physical effects as well as the results by means of temperature dis-
tribution in the ice and water phase and growth of the ice particle’s
interface, which are compared to a numerical reference solution.

2. Mathematical formulation and identification of the most
important physical effects

Further growth of an ice nucleus in super-cooled water is ener-
getically favorable once the critical cluster size Rc is exceeded
which is characterized by the maximum in the specific Gibbs free
energy g. Accounting for the thermodynamic equilibrium of both
phases and using Gibbs fundamental equation to express the speci-
fic Gibbs free energy g in terms of temperature T, the critical cluster
radius reads

Rc ¼ � 2r
qi L T1

Tm
� 1

� �
þ cp;w � ci
� �

T1 ln T1
Tm

� �
þ Tm � T1

� �� �
0@ 1A ð1Þ

with surface tension r, ice density qi, specific latent heat of fusion L,
specific heat capacity of ice ci and of water at constant pressure cp;w.
The temperature Tm indicates the standard melting temperature
and T1 the ambient temperature of the gas phase.

Nomenclature

Latin characters
a thermal diffusivity (m2 s�1)
An, Bn constants (–)
C1—C8 constants (–)
~C3; bC3; ~C4 constants (–)
ci specific heat capacity of ice (J kg�1 K�1)
cp;w specific heat capacity of water at constant pressure

(J kg�1 K�1)
Dn, En constants (–)
Es maximum relative error in time (–)
g specific free energy (J kg�1)
k thermal conductivity (Wm�1 K�1)
L specific latent heat of fusion (J kg�1)
r radial coordinate (m)
R radial ice-water interface position (m)
Rc critical nucleus radius according to Eq. (1) (m)
Rd reference droplet diameter (m)
Rd;min minimum droplet diameter (m)
Rmax maximum size of the ice particle (m)
Rstable radius defining the upper limit of spherical ice growth

according to Eq. (2) (m)
_R radial velocity of the ice-water interface (m s�1)
St Stefan number, St ¼ cp;w Tm � T1ð Þ=L (–)
t time or time span (s)
T temperature (K)
DT degree of supercooling (K)
Tm standard melting temperature (K)
TGT reduced melting temperature due to a curved

interface (K)
v velocity of the water phase (m s�1)

X water-air interface position (m)
Z transformed temperature gradient Z ¼ f2dfH

ss;Dq
w (–)

Greek characters
C adapted constant from similarity solution (–)
Css constant from a similarity solution where Dq– 0 (–)
Css;Dq¼0 constant from a similarity solution where Dq ¼ 0 (–)
D difference in a quantity between liquid water and ice (–)

g coordinate, g ¼ ~r � ~R
� �

= ~X � ~R
� �

(–)
H dimensionless temperature,H ¼ T � Tmð Þ= T1 � Tmð Þ (–)
W transformed dimensionless temperature, W ¼ H~r (–)
q density (kg m�3)
r interfacial energy between two phases (N m�1)
s dimensionless time, awt=R2

d (–)
n coordinate, n ¼ ~r=~R (–)
f coordinate, f ¼ ~r=~R (–)

Subscripts
0, ref reference or initial value
i ice phase
n index of a sum
w water phase
1 ambient conditions

Superscripts
h solution to a homogeneous problem
p particular solution
� dimensionless quantity
R;X quantity is evaluated at the specified location
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