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a b s t r a c t

The conventional SIMPLE algorithm for the pressure–velocity coupling has been adopted by many com-
mercial CFD codes. Since it encounters convergence problem when it is used for numerical analysis of a
two-dimensional unsteady natural convection flow in a rectangular cavity with zero-isothermal
compressibility, the modification of SIMPLE algorithm has been proposed for such a fluid. In this paper,
differences between solutions for a one dimensional natural circulation of a super-critical carbon dioxide
in a loop with a horizontal heater and a horizontal cooler configuration obtained by using the conven-
tional SIMPLE algorithm and the modified version of the algorithm are investigated. The modification
of the algorithm includes updating the density at each time step based on its value at the previous time
step to satisfy the mass conservation. The differences of the velocity and temperature are relatively small
comparing with the two-dimensional natural convection case. As an example of utilizing the modified
SIMPLE algorithm, characteristics of the unsteady natural circulation of super-critical carbon dioxide in
a rectangular loop are revealed.

� 2018 Published by Elsevier Ltd.

1. Introduction

Density wave instability in a natural circulation loop operating
with supercritical fluids has been analyzed using a one dimen-
sional simulation code [1–5]. It is worth-while to analyze this
instability problem using SIMPLE algorithm [6] to reduce the com-
putation time. A ratio of isothermal to isobaric compressibilities,
�ð@q=@pÞT=ð@q=@TÞp, of supercritical water near the pseudo-
critical point (23 MPa and 650 K) is about 3 � 10�6 K/Pa and that
for supercritical carbon dioxide (8 MPa and 308 K) is about
6 � 10�6 K/Pa [7]. This ratio for water is 1.6 � 10�6 K/Pa at the
atmospheric pressure and temperature (100 kPa and 300 K). In
case of an ideal gas the ratio is expressed as T=p which is about
0.003 K/Pa at the atmospheric pressure and temperature. The ratio
of isothermal to isobaric compressibilities of a supercritical fluid is
small as compared to that of an ideal gas and is almost equal to
that of water at atmospheric pressure and temperature. A super-
critical fluid near the pseudo-critical point can be assumed as a
fluid with zero-isothermal compressibility. As the pressure varia-
tion in the loop is also small, hence fluid density is treated as a

function of temperature only at a given operating pressure in the
above analyses.

The SIMPLE algorithm for the pressure-velocity coupling has
been adopted by many commercial and non-commercial CFD codes
such as FLUENT, Star-CD, Phoenix, OpenFOAM, etc. Steady [8–11]
and unsteady [8,12–14] supercritical natural circulation in a loop
with a heater and a cooler were numerically analyzed by using
such a code. The fluid density is also treated as a function of tem-
perature only in these analyses. Recently, one of the authors found
that if the fluid density is a function of temperature only, the con-
ventional SIMPLE algorithm encounters a convergence problem
and gives a physically unrealistic velocity profile when it is used
to solve an unsteady natural convection in a two-dimensional cav-
ity [15]. The mass of the fluid in the cavity changes with time when
the fluid density is considered as a function of temperature only
since the volume of the cavity is fixed. The mass conservation in
the cavity is not satisfied leading to convergence problem with
the conventional SIMPLE algorithm. The same convergence prob-
lem should have been observed when the conventional SIMPLE
algorithm was adopted to natural circulation analysis. However,
the convergence problem has not been reported in the above men-
tioned papers which deal with the unsteady problem.

This study deals with the modification of SIMPLE algorithm for
one dimensional natural circulation in a loop. As an example of
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utilizing the modified SIMPLE algorithm, characteristics of the
unsteady natural circulation of super-critical carbon dioxide in a
square loop are revealed.

2. Description of a problem

To demonstrate the modification of SIMPLE algorithm, a natural
circulation square loop which is similar to Lomperski’s loop [16] is
considered. A schematic diagram of the loop considered is pre-
sented in Fig. 1. Both the loop height and width are L. The x is
the streamwise distance and its origin is the left bottom corner
of the loop. Lomperski et al. [16] used an AC direct current heater
and a double tubes heat exchanger for a cooler. The heater and the
cooler are located at the center of the lower and upper horizontal
tubes of the loop, respectively. Therefore, it is assumed that the
heater section of length LH is heated with constant heat flux and

the cooler section of length LC is cooled with constant heat flux.
The heat transfer rate in the heater and cooler sections are denoted
by Q and �Q. They are located at the center of the lower and upper
horizontal tubes. Initial state of the loop holds a supercritical fluid
at an initial pressure pin and the initial temperature Tin. Heating
and cooling are started at t = 0.

2.1. Governing equations

The governing equations for one dimensional flow in a loop are
well documented in the paper by Sharma et al. [14]. The continuity
equation is

@q
@t

þ @ðquÞ
@x

¼ 0 ð1Þ

Integrating Eq. (1) along the loop, the following equation is
obtained.

@

@t

I
q A dx ¼ 0 ð2Þ

where A represents the cross sectional area of the loop. Eq. (2) can
be rewritten as

@

@t

I
q A dx ¼ @M

@t
¼ 0 ð3Þ

where M represents the mass of the fluid in the loop. Eq. (3)
expresses the mass conservation in the loop.

As mentioned before a supercritical fluid near the pseudo-
critical point can be assumed as a fluid with zero-isothermal com-
pressibility and the pressure variation in the circulation loop is not
so large. This will be discussed later but it is less than 11 kPa at

pin ¼ 8 MPa and _Q = 8000 W. The assumption that the density of
the supercritical carbon dioxide is a function of temperature only,
is applicable. As the volume of the loop is fixed and the fluid den-
sity is considered as a function of temperature only, the mass of the
fluid in the loop changes with time after heating is started. Hence
mass conservation in the loop is not satisfied. So, a special treat-
ment for density in the continuity equation is required. This will
be discussed later.

The momentum and energy equations are

q
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þ qu
@u
@x
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Fig. 1. A schematic diagram of a square loop.

Nomenclature

a coefficient of discretization equation
A cross sectional area of a loop (m2)
b source term of discretization equation
D diameter of a loop (m)

f friction factor (¼ �ðdp=dxÞ D
qu2=2 )

g gravity (m/s2)
h specific enthalpy (J/kg)
M mass of fluid in a loop (kg)
N number of control volumes (–)
p pressure (Pa)
_qV heat input or removal per unit volume (W/m2)
_Q heat input or removal (W)
RC normalized residual of continuity equation
Ru normalized residual of u
Re Reynolds number (¼ uD

l=q)
Smax maximum of rate of mass imbalance in each control vol-

ume
Ssum rate of mass imbalance in a loop

t time (s)
T temperature (K)
u velocity component (m/s)
V volume (m3)
x coordinate (m)

Greek
u angle between x and gravity
l viscosity (Pa s)
q density (kg/m3)

subscripts
e, w control-volume faces
in initial value
nb neighbor-point
P central grid point
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