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a b s t r a c t

Artificial Neuron Networks (ANN) is considered one of the most practical technologies in the fields of
intelligent manufacturing. In this study, the conventional heat transfer model and multilayer ANN anal-
ysis are compared to analyze the accelerated control cooling process, and the accuracy improvement of
finish cooling temperature prediction by the ANN is evaluated. The temperature prediction error from the
heat transfer model tends to increase with increasing the start cooling temperature in Curie temperature.
It is found that the specific heat for low carbon steel shows a nonlinear tendency in Curie temperature.
The ANN of backpropagation is applied to solve the nonlinear tendency of the specific heat. In the ANN
analysis, the key parameters such as dimensions of plate, chemistry, start cooling temperature, air cooling
time, water cooling time are selected as the input values. The hyperbolic tangent, sigmoid and linear
functions are applied for the activation functions. The weights training was conducted 100,000 times,
the weights were trained to satisfy the standard deviation of finish cooling temperature within 10.56
K. It was found that the accuracy from the ANN analysis was improved 2.74 times than the heat transfer
model with least square method. It was concluded that the ANN with multilayer type could train the
weights by the effect of the nonlinear trend of specific heat according to temperature. It is recommended
that the heat transfer model should be replaced by the neural networks method of 3 layers (one input-
layer, one hidden-layer, one output-layer) with the trained weights for the precise control cooling.

� 2018 Published by Elsevier Ltd.

1. Introduction

Nowadays, high quality plate from the viewpoints of toughness,
strength and yield ratio is demanded in the ship building industry.
The demand for a high quality of plate has made engineers aware of
the precise cooling for finish cooling temperature and cooling rate.
And many steel-making companies have developed more precise
cooling model than the previous one by adapting a special logic
with the site effects for the precise plate cooling. Themanufacturing
process of thermalmechanical control cooling plate called ‘‘acceler-
ated control cooling” is one of the typical cases. One important issue
is to get more fine grain size with hot rolling in two-phase region
and water cooling [1,2]. The other is to control the steel strength,
yield ratio and toughness [3–5]. Many researchers have modeled
the cooling condition of a material for more efficient usage and
more precise cooling with the finite element method (FEM) and
the finite difference method (FDM). The researchers have studied
on the appropriate start cooling temperature, finish cooling tem-
perature, cooling rate and phase transformation for steel properties.

The temperature prediction error about finish cooling temperature
occurs in actual cooling processes in plant industry. The main
causes are the specific heat deviation according to temperature,
components of chemistry and heat transfer coefficient deviation
of air and the plate flatness. To reduce the temperature prediction
error, most of cooling machines have an adaptation model by using
the least square method for long-term compensation and by apply-
ing amplification factors for short-term compensation about the
target temperature. However, the adaptation model cannot include
the compensation of temperature error without the precise specific
heat data about infinite cases.

For calculating accurate specific heat and strength, many engi-
neer had been used avrami equation [6–8]. Serajzadeh [9,10] stud-
ied themodelling of temperature history andphase transformations
for an distribution of ferrite, pearlite, austenite according to temper-
ature and time. The results from Denis et al. [11] were applied for
the predictionmodel of average of specific heats, strength according
to the phase distribution. In addition, a product for the control cool-
ing is grouped by the influence factors for accurate cooling.

Zheng et al. [12] studied the locally-linear-reconstruction based
instance-based-learning (LLR-IBL) to calculate the heat transfer
coefficient more accurately. Wang et al. [13] and Nobari et al. [14]
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measured the heat transfer coefficient on hot steel by experiments.
Ma et al. [15] studied the heat transfer coefficient for supercritical
water based on neural network in nuclear reactor. Olivia and Sousa
[16] studied the air/water spray cooling to predict the heat transfer
coefficient and air/water pressure ratio with the neural network
analysis in forging process. They found that a non-mathematically
formulated model could be used as a useful tool for integrated
design and manufacturing without the heat transfer model.
Although the control cooling and prediction accuracy of the finish
cooling temperature were improved by these studies, the predic-
tion error was still remained involving the nonlinear compensation
in wide temperature change, especially around the curie point.

The artificial neural networks model includes the concepts
about not only the process of heat transfer coefficient calculation,
but also the initial temperature distribution because the multilayer
can include each calculation process with neurons. It is also well
known that the backpropagation of artificial neural networks can
separate the linear condition like AND, OR logic functions as well
as the nonlinear condition like exclusive or (XOR) logic. Wang
et al. [17] studied the neural network to predict the plate cooling
temperature, which was an useful approach about the finish cool-
ing temperature. However, they did not consider the effects of
chemistry of slab and air cooling time before and after the water
cooling. The artificial neural network has been applied to an arti-
ficial intelligent manufacturing such as optimization of process
parameters in feed manufacturing [18], distinguishing letters, ana-
lyzing microstructures [19] and flow stress for rolling force [20] in
material process engineering, calculating heat flux in nuclear engi-
neering [21], determining the effects of cooling water flow rate on
heat pump performance [22] and heat transfer prediction of super-
critical water [23] and so on. In this study, the backpropagation of
artificial neural network is applied to control the cooling process to
obtain more accurate temperature prediction. The prediction accu-
racy of the finish cooling temperature is estimated by the artificial
neural networks, and the results are compared with those from the
heat transfer model and the experimental results.

2. Experiments

2.1. Plate cooling system

Fig. 1 shows the schematic of the plate cooling system in steel
industry. In the plate cooling system, it is very important to predict

the finish cooling temperature of plate and the water cooling time
with primary data such as thickness, start cooling temperature,
and components of chemistry. Generally, the heat transfer model
is used to predict the finish cooling temperature and the water
cooling time. In this study, both the artificial neural network model
based on the backpropagation algorithm and the typical heat
transfer model are developed and the prediction accuracies of
the finish cooling temperature are compared for both models.

2.2. Heat transfer model

The principle of energy conversation, Fourier’s law, Newton’s
law of cooling and Stefan-Boltzmann’s law are applied for the heat
transfer model in the plate cooling system. Fig. 2 shows the control
volume for the heat transfer model. It is assumed one dimension in
the thickness direction because the width and length are very large
compared to the thickness of the plate. The governing equation for
the energy balance is expressed as in Eq. (1) [24,25].
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The implicit equations of numerical analysis for finite difference
method could be derived by Eq. (1). To solve the implicit governing
equation, tri-diagonal matrix algorithm is programed. With this
basic model, the heat transfer coefficient of water cooling can be
plotted as a function of the top surface temperature based on the
experimental data [16]. Fig. 3 shows the heat transfer coefficient
versus the top surface temperature for each cooling efficiency.
The cooling efficiency depends on the cooling rate, the finish cool-
ing temperature, and the equipment capacity. The heat transfer
coefficient of cooling air is expressed by Nusselt number with Ray-
leigh number (Ra). It is expressed as Eqs. (2)–(4).

hC ¼ k
L
Nu ¼ k

L
f ðRaÞ ð2Þ

hR ¼ e � b � ðTS þ TAÞ � ðT2
S þ T2

AÞ ð3Þ

hAir ¼ hC þ hR ð4Þ
where hC is the convective heat transfer coefficient of air, hR is

the radiative heat transfer coefficient of air and hAir is the total heat
transfer coefficient of air, which is defined as the summation of
convection and radiation effects. Fig. 4 shows the total theoretical

Nomenclature

Cp specific heat, J/kg � K
ej temperature error of output layer, K
E sum squared temperature error, K
g gravitational acceleration, m/s2

Gr Grashof number
hC convective heat transfer coefficient of air, W/m2 � K
hR radiative heat transfer coefficient of air, W/m2 � K
hAir total heat transfer coefficient of air, W/m2 � K
L characteristic length, m
Nu Nusselt number
Oj output value of layer, K
Pr Prandtl number
Ra Rayleigh number
t time, s
Tj target value of layer, K
T temperature, K
X measurement value
�X measurement mean value

Greek symbol
a thermal diffusivity, m2/s
u thermal expansion coefficient, K�1

b Stephan Boltzmann constant, W/m2 � K4

k thermal conductivity, W/m � K
e emissivity, –
q density, kg/m3

m kinematic viscosity, m2/s
g learning constant, –
/ activation function
/0 derivative of activation function

Subscripts
j node of current layer
k node of next layer
Xt transformed ratio of austenite in steel
W weights
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