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a b s t r a c t

Direct numerical simulation (DNS) of turbulent flow in a periodic channel is performed to study the effect
of the wall-normal spatial resolution near the wall on the calculations of turbulence statistics using mul-
tidomain Chebyshev grids. A discontinuous spectral element method (DSEM) is employed to calculate the
first- and second-order statistics of the flow near the wall. The effect of the spectral approximation order
on the resolution requirement is also studied by considering three approximation orders of P ¼ 2; 5, and
7. The Reynolds number based on the bulk density, bulk velocity, and channel half-height is Re ¼ 3266,
which corresponds to a friction Reynolds number of Res � 204 based on the wall friction velocity and
the channel half-height. It is observed that the near-wall resolution requirement strongly depends on
the spectral approximation order. For the same total number of grid points, a higher approximation order
provides more accurate results. For approximation orders of P ¼ 5 and 7, grids with respectively 11 and 8
points inside yþ ¼ 10 are sufficient to resolve the turbulent statistics near the wall, while a grid with
P ¼ 2 requires more than 11 points in the same region to achieve the same level of accuracy.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The accuracy of the predictions of turbulence statistics near the
wall in direct numerical simulation (DNS) of turbulent flows
depends strongly on the grid resolution near the wall, especially
in the wall-normal direction. In DNS of near-wall turbulence, the
resolution near the wall should be sufficient to capture the behav-
ior of the boundary layer in all three regions of the inner layer: the
viscous (laminar) sublayer, the buffer layer, and the log-law (fully
turbulent) region. It has been shown that an under-resolved grid in
one or more directions negatively affects the prediction of the
mean properties as well as higher-order statistics of the flow [1].
Since the grid spacing criteria should be independent of the Rey-
nolds number, the spatial spacing is usually calculated based on
the non-dimensional wall unit, yþ. Previous grids used for DNS of
wall-bounded turbulent flows usually satisfy two general condi-
tions: (i) The nearest grid point to the wall is located below
yþ ¼ 1, and (ii) there are at least 10 grid points within yþ ¼ 10
(hereinafter, called yþ10). For most grids, these conditions can be sat-
isfied by placing the first point below yþ ¼ 1 and gradually increas-
ing the grid spacing (using a geometric progression for example) as
moving away from the wall. However, in numerical schemes that

use a Chebyshev distribution of grid points, satisfying the second
condition would result in a minuscule grid spacing at the wall
(usually, orders of magnitude smaller than yþ ¼ 1) due to the high
non-uniformity of point distribution. Some types of spectral and
spectral element methods are examples of the schemes that use
Chebyshev grids, which have been increasingly used by research-
ers recently [2,3].

For example, the discontinuous spectral element method
(DSEM) [4–6] divides the physical domain of interest into non-
overlapping hexahedral subdomains (the so-called elements). The
hexahedral elements, which may have edges with arbitrary
lengths, are then mapped to a unit cube in the computational
space. Inside each element, the spectral approximation is applied
on a staggered grid with a Chebyshev distribution of points. The
grids consist of two staggered sets of points: Gauss quadrature
points (used to calculate the solutions) and Gauss-Lobatto quadra-
ture points (used to calculate fluxes). The Gauss quadrature points
in the mapped space are placed in each direction using a symmet-
ric Chebyshev distribution of the form
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over the interval of ½0;1�, where P is the spectral approximation
order [4]. For an approximation order of P ¼ 9, such element has
10 Gauss quadrature points with the distribution shown in Fig. 1.
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Note that the first point is located at X1=2 ¼ 6:16� 10�3. If the near-
wall elements are distributed normal to the wall such that the first
point off the wall is located at yþ ¼ 1, there would be only 2 points
inside yþ10. Even by placing the first point at yþ ¼ 0:1, there would be
only 6 points within yþ10. On the other hand, if the elements near the
wall are placed such that the second condition is satisfied, i.e., there
are 10 Gauss points within yþ10, the first point near the wall would
be located at yþ ¼ 0:0616. In this case, the extremely small grid size,
which occurs both on the wall side and on the other end of the first
element, severely restricts the time step size and makes the simula-
tion computationally expensive if the numerical stability is condi-
tional on the time step size. Therefore, for such schemes, it is
challenging to determine the sufficient near-wall resolution, while
minimizing the restriction of the time step size. To the best knowl-
edge of the authors, this challenge has not been tackled so far.

The periodic channel flow is a well-studied benchmark for wall-
bounded turbulent flows and is used as the test case here. In this
paper, a series of DNS of periodic turbulent channel flow are con-
ducted using DSEM to study the requirement of the grid resolution
normal to the wall for accurate prediction of turbulent statistics
using multidomain Chebyshev grids. The effect of the spectral
approximation order on the spatial resolution requirement is also
studied by testing three different orders. The flow is simulated
using nine grids (three grids with different resolutions for each
approximation order), and their mean flow statistics, velocity fluc-
tuations, and Reynolds shear stresses are compared.

1.1. Previous DNS of channel flow

The DNS of turbulent flow in a periodic channel has been
intensively studied. Kim et al. [7] conducted DNS of an incompress-
ible, turbulent channel flow using a spectral method. The
simulations were performed at a friction Reynolds number of
Res ¼ usd=m ¼ 180, where us is the wall friction velocity, d is the
channel half-height, and m is the fluid’s kinematic viscosity. Their
scheme featured a fully spectral method with Fourier series in
the homogeneous directions, i.e., streamwise and spanwise direc-
tions, and a Chebychev polynomial expansion in the normal direc-
tion. The grid that they used had 12 points inside yþ10, and the
nearest grid point to the wall was located at yþ ¼ 0:05. Rai and
Moin [8] presented a finite-difference (FD) solution to the incom-
pressible fully developed turbulent channel flow at a friction Rey-
nolds number of Res ¼ 180 and provided a comparison between
the results obtained using FD and spectral methods. They used a
geometric progression for the distribution of near-wall grid points
normal to the wall. Lyons et al. [9] presented results from a DNS of
fully developed incompressible turbulent flow in a channel. They
also used Fourier series expansions in the periodic directions and
Chebyshev polynomial expansions in the normal direction. The
friction Reynolds number was Res ¼ 130, and the nearest grid
point to the wall was located at yþ ¼ 0:18. Crawford [10] employed
a spectral element method and conducted a grid resolution study

for an incompressible turbulent flow in a periodic channel at a fric-
tion Reynolds number of Res � 207. The grid that was concluded to
be adequate to resolve the turbulent statistics had its first point
near the wall at yþ ¼ 0:29. Moser et al. [11], as the continuation
of the work of Kim et al. [7], used the same code later and reported
detailed statistical data from DNS of incompressible fully devel-
oped turbulent channel flow at three friction Reynolds numbers
of Res ¼ 180; 395, and 590. In all three cases, they had 13 or more
grid points within yþ10. del Alamo and Jimenez [12] performed DNS
of turbulent channel flow at Reynolds numbers of Res ¼ 180 and
550 using the same numerical method as [7]. Their focus was on
the size and location of large scales of motion in the channel flow.
Morinishi et al. [13] performed DNS of turbulent channel flows
using an algorithm based on the B-spline collocation method in
the wall-normal direction and the Fourier Galerkin method in the
periodic directions. They considered both incompressible and com-
pressible (Mach number of 1:5) cases at a Reynolds number of
Ref ¼ 3000 based on the bulk density, bulk velocity, and channel
half-height. They used a hyperbolic-tangent function for the distri-
bution of the wall-normal collocation points, and the nearest point
to the wall was located at yþ ¼ 0:045 and � 0:35 for their incom-
pressible and compressible cases, respectively. Lee and Moser
[14] performed DNS of incompressible channel flow at different
Reynolds numbers ranging from Res ¼ 180 to 5186. They used a
Fourier-Galerkin method in the periodic directions and a B-spline
collocation method in the wall-normal direction. The grid they
used for the highest Reynolds number had 15 points within yþ10.
The first points for the lowest and the highest Reynolds number
cases were located at yþ ¼ 0:074 and yþ ¼ 0:498, respectively.
A summary of the above-mentioned studies along with more
details of their computational domains and grids are included in
Table 1.

Grötzbach [15] deduced three criteria for the prediction of grids
for DNS of turbulent flow. Their second criterion, concerning the
near-wall resolution, states that, for turbulent flows with a Prandtl
number below unity, at least three grid points must be placed
inside the viscous sublayer (yþ < 5). Later, Moin and Mahesh [16]
provided a review of DNS of turbulent flows. They pointed out that
spectral schemes require less spatial resolution than other
schemes, such that second-order central difference schemes need
about twice the resolution (in each direction) to achieve the same
level of accuracy as a spectral DNS.

In the following section, the governing equations and the
numerical methodology that are used for the present simulations
are provided. Next, the problem setup for the periodic channel flow
and the grid generation procedures are discussed. Then, the results
of the simulations and discussions are presented; first, it is shown
that the statistics of interest are not affected by the compressibil-
ity, and the methodology is able to reproduce previous DNS results.
Then, the mean velocity, temperature, and density profiles, as well
as mean flow variables, are compared for different cases. Further-
more, the second-order statistics including the velocity fluctua-
tions and Reynolds shear stresses are presented and discussed for
all cases. Next, the cases are compared based on their computa-
tional costs. Finally, conclusions are drawn.

2. Governing equations and numerical methodology

2.1. Governing equations

The governing equations for three-dimensional (3D), unsteady,
compressible, viscous fluid flow, the so-called full Navier-Stokes
equations, consist of the conservation of mass, momentum, and
energy. The non-dimensional form of these equations in the con-
servative form are presented in the Cartesian vector notation as

Fig. 1. Distribution of Gauss quadrature points (blue ticks) in a Chebyshev grid of
order P ¼ 9. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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