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a b s t r a c t

A discontinuous finite element method (DFEM) with a local numerical flux scheme is developed for solv-
ing radiative transfer problems in participating media with strongly inhomogeneous medium properties,
steep gradient source, and inhomogeneous angular radiation intensities. The discrete elements in DFEM
are assumed to be discontinuous on the inner-element boundaries and the shape functions are con-
structed on each element. The continuity of the computation domain is maintained by modeling a
numerical flux across the inner-boundaries, which makes the DFEM suitable, accurate and numerical
stable for radiative transfer problems involving strong inhomogeneity. Several test cases are studied to
evaluate the DFEM performance for radiative transfer equation (RTE) with strong inhomogeneity. The
DFEM solutions are compared with those obtained by the meshless method and the finite element
method. Our results show that the DFEM is more accurate and stable than the other two methods.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative heat transfer in participating media has attracted sig-
nificant attention due to its wide application in many scientific and
engineering problems [1–3]. The radiative transfer equation (RTE)
in an absorbing, emitting, and scattering medium is a complicated
integral–differential equation which is difficult to find an analytical
solution. Researchers, therefore, have been attempting numerical
methods to obtain approximate solutions for the RTE. Several
numerical techniques have been successfully applied to predict
the radiative transfer process in participating media, such as the
finite element method (FEM) [4–6], the Monte Carlo method
(MCM) [7–10], the discrete ordinate method (DOM) [11–14], the
finite volume method (FVM) [15–17], the distributions of ratios
of energy scattered or reflected (DRESOR) method [18–20], and
the lattice Boltzmann method (LBM) [21–23], to cite a few
examples.

The RTE is a first-order integral–differential equation and is
convection-dominated. The presence of the convection term in
the RTE may induce strong instabilities to the numerical solutions.
In many numerical methods based on the discretization of the RTE,
including the DOM and the FEM, the solution oscillations will occur

if no special stability treatment is applied. Luo et al. [24] applied an
upwind scheme to the direct collocation method to mitigate the
solution oscillations. Zhao et al. [25] derived a second-order radia-
tive transfer equation (SORTE) and presented its stable solutions
obtained by the FEM. To overcome the singularity problem of
SORTE for dealing with media with zero extinction coefficients,
Zhao et al. [26] developed a modified second order form of radia-
tive transfer equation (MSORTE) and tested its numerical perfor-
mance for several critical cases.

For radiative transfer problems in media with strong inhomo-
geneity (e.g. inhomogeneous medium properties and source
terms), the radiative intensity has strong non-uniform or even dis-
continuous distributions. The solutions obtained by the conven-
tional numerical methods suffer significantly from the
instabilities [24–26]. More accurate and stable numerical algo-
rithms are urged to be developed for this kind of radiative transfer
problems. Currently, the grid-based FEM is a popular algorithm for
solving the RTE in participating media because of its advantage of
dealing with multidimensional problems flexibly and efficiently.
However, the FEM is a global method where the inner-element
boundaries are enforced to be continuous, which will induce addi-
tional errors and instabilities to the numerical solutions. Thus
when dealing with radiative transfer problems involving strong
intensity gradients or even discontinuities, a local method is
expected such that the intensity property across the inner-
element boundaries can be modeled more precisely.

https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.115
0017-9310/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: wangcunhai@hit.edu.cn (C.-H. Wang).

1 These authors contributed equally to this work.

International Journal of Heat and Mass Transfer 126 (2018) 783–795

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2018.05.115&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.115
mailto:wangcunhai@hit.edu.cn
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.115
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Originally proposed by Reed and Hill [27], the discontinuous
finite element method (DFEM) combines the salient features of
FEM and FVM [28] and has been successfully applied to solve var-
ious partial differential equations [29–35] as well as the RTE
[36–39]. Compared to the global shape functions in the conven-
tional FEM, the shape functions in the DFEM are constructed on
each discrete element locally. Therefore, the RTE is solved for each
element in the DFEM application such that element-wise solutions
can be obtained. A numerical flux across the inner-boundaries is
numerically implemented to connect the adjacent element, and
this maintains the continuity of the computational domain The
DFEM is thus a local method and has the advantages of ensuring
geometric flexibilities and supporting locally adapted resolutions
at the same time, which makes it suitable for solving radiative
transfer problems involving space- and angular-dependent
inhomogeneity.

In this paper, the DFEM with a local numerical flux scheme is
applied to radiative transfer problems involving strong inhomoge-
neous radiation distributions. The discrete-ordinate form of RTE
and its DFEM discretization are presented in Section 2. The accu-
racy of DFEM and its superiority to bate the solution oscillations
are verified in Section 3 by comparing the DFEM solutions with
those by other methods for several test cases. This work is con-
cluded in Section 4.

2. Mathematical formulation

2.1. Governing equation of radiative transfer

The discrete-ordinate form of radiative transfer equation, which
describes the energy balance in the discrete direction, can be writ-
ten as [1,2]

Xm � rIðr;XmÞ þ bðrÞIðr;XmÞ ¼ Sðr;XmÞ; ð1Þ
whereXm = lmi + gmj + nmk the unit direction vector with i, j, and k
denoting the unit vector in the dimension of x, y, and z, respectively,
I is the radiative intensity to be solved, r is the location, b is the
extinction coefficient, and S is the source term defined as

Sðr;XmÞ ¼ jaðrÞIbðrÞ þ js

4p
XM
m0¼1

Iðr;Xm0 ÞUðXm0
;XmÞwm0

; ð2Þ

where ja and js are the absorption coefficient and scattering coef-
ficient respectively, Ib is the black body emission,U is the scattering
phase function, andwm0 is the weight corresponding to the direction

Xm0
.
Consider the boundary emission and reflection, the boundary

conditions are given as

Iðrw;XmÞ ¼ ewIbðrwÞ þ 1� ew
p

X
nw �Xm0

>0

Iðrw;Xm0 Þjnw �Xm0 jwm0

þ qsIðrw;Xm00 Þ; ð3Þ
where the subscript ‘w’ denotes the physical boundary, nw denotes

the unit outward normal vector on the physical boundary, Xm00

denotes the corresponding incident direction of the current specu-
lar reflected radiation in the direction Xm.

2.2. DFEM discretization of RTE

The application of a grid-based algorithm for RTE starts with
dividing the continuous computational domain into a finite num-
ber of elements. The complex partial differential equation is broken
down into a series of linear simultaneous equations on the discrete
elements. The continuous problem, which has an infinite number

of unknowns, is thus reduced to a problem with a finite number
of solutions on specific nodes.

In the conventional FEM, as shown in Fig. 1(a), the inner-
element boundaries are enforced to be continuous, that is, the radi-
ation intensities on the node shared by two adjacent elements are
assumed to be the same. However, this assumption does not repre-
sent the nature of the solutions for the simultaneous equation and
may bring large errors to radiative transfer problems with steep
intensity gradients. In the DFEM application, the discontinuity
across the inner-element boundaries is allowed, which means that
at the same geometric point, the radiation intensities are consid-
ered to be discontinuous, as shown in Fig. 1(b). The approximation
functions are constructed on each element and the solutions of RTE
are element-wise, which matches the properties of the simultane-
ous equations on the discrete elements and makes the DFEM suit-
able for radiative transfer problems with inhomogeneity.

To gain the generality of DFEM discretization of RTE for multi-
dimensional problems, a two-dimensional medium divided into
triangular meshes (see Fig. 2) is used to illustrate the DFEM dis-
cretization procedure. By using the weight function locally defined
on each element, Eq. (1) is weighted by W(r, X) and is integrated
over the element e using the Gauss divergence theorem [40]

�hIm;Xm � rWie þ ð½XI�m � n@e;WÞ@e þ hbIm;Wie ¼ hSm;Wie; ð4Þ
where ½XI�m denotes the numerical flux to be modeled, n@e denotes
the unit outward normal vector, the subscript @e denotes the ele-
ment boundary, and the operators are defined as

hf ; gie ¼
Z
e
fg dV ; ðf ; gÞ@e ¼

Z
@e
fg dA: ð5Þ

In this paper, the local Lax-Friedrichs numerical scheme [41] is
chosen as the numerical flux across the elements, and it is
expressed as

½XI�m ¼ Xm�Im þ jXmj�Imn@K ; ð6Þ
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Fig. 1. The elements and solution nodes. (a) In the conventional FEM, the control
volume of the jth element is Vj = [j, j + 1], the neighboring elements Vj�1 and Vj share
a solution node jwhere the radiation intensity keeps the same for the two elements,
(b) in the DFEM, the control volume of the jth element is Vj = [2j � 1, 2j], each
element has its own solution nodes. For the nodes 2(j � 1) and 2j � 1, the geometric
coordinates are the same while the radiation intensities on them can be different.
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Fig. 2. Sketch of triangular meshes, unit outward normal vector of the element
boundary, and the radiation intensity.
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