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a b s t r a c t

It is often useful to determine temperature and heat flux in multidimensional solid domains of arbitrary
shape with inaccessible boundaries. In this study, an effective algorithm for solving boundary inverse
heat conduction problems (IHCPs) is implemented: transient temperatures on inaccessible boundaries
are estimated from redundant simulated measurements on accessible boundaries. A nonlinear heat equa-
tion is considered, where some of the material properties are dependent on temperature. The IHCP is
reformulated as an optimization problem. The resulting functional is iteratively minimized using a con-
jugate gradient method together with an adjoint (dual) problem approach. The associated partial differ-
ential equations are solved using the finite-element package FEniCS. Tikhonov regularization is
introduced to mitigate the ill-posedness of the IHCP. The accuracy of the implemented algorithm is
assessed by comparing the solutions to the IHCP with the correct temperature values, on the inaccessible
boundaries. The robustness of our method is tested by adding Gaussian noise to the initial conditions and
redundant boundary data in the inverse problem formulation. A mesh independence study is performed.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat transfer problems (IHTPs) have raised increasing
attention over the last decades thanks to their many scientific
and technological applications. It is established that the IHTP is
ill-posed in the sense of Hadamard ([6]); that is, the solution
may not exist or be unique. Moreover, this problem is very
sensitive to error, originating from input data, material properties,
or rounding.

Based on the causal characteristics to be evaluated, IHTPs fall
into four major classes: boundary, coefficient, retrospective, and
geometric problems [3].

IHTPs can also be classified based on the heat transfer mecha-
nism: conduction, convection, radiation, phase change (melting
or solidification), or a combination of them [38].

Discretization methods range from control volume [41,12],
boundary element [25], and finite difference [15,35], to classic
finite element [26,33,16], mixed finite element and differential
quadrature methods [18], and finite element with Trefftz functions
[20].

Techniques commonly used for solving IHTPs include whole
domain and sequential regularization methods [44], global and
sequential function specification techniques [6,34], gradient
iterative methods [2,25,21], stochastic optimization techniques
[43], Monte Carlo methods [22,37], methods comprising filtering
techniques [26], and neural networks [30,5,15].

Concerning regularization, it is introduced to obtain a stable,
well-posed problem by minimizing an objective function. In this
respect, Tikhonov regularization [44], Alifanov’s iterative regular-
ization [3], generalized eigensystem methods [42], and energetic
regularization [13] are viable choices.

Here, our goal is to estimate the transient heat flux and temper-
ature on an unreachable boundary from the transient radial heat
flux and temperature on a reachable boundary. Consequently, we
are faced with a boundary inverse heat conduction problem (IHCP).
This problem is solved on the cross section of a hollow cylinder,
which models the control-rod stems of several Swedish boiling
water reactors. Thermal fatigue cracking was detected there in
2008 [45]. In our experiments and simulations, temperatures were
sampled on the above cylinder when subject to a temperature
range of 216 K and a pressure of 7.2 MPa. High pressures and tem-
peratures in our test section prevented the installation of a large
number of thermocouples to measure temperatures on all bound-
aries. Furthermore, as stressed in Meresse et al. [34], introducing
more probes than necessary could perturb the thermal field in
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the solid domain. Algorithms accurately computing the tempera-
ture field in the above cylinder and other similar structures can
help to validate computational fluid dynamics simulations more
thoroughly. Moreover, thermal stresses can be computed from
the solutions to 3D transient IHCPs. Here, we briefly review recent
work on 2D and 3D transient IHCPs: in this article, we focus on 2D
domains, but we plan to extend our approach to 3D domains of
arbitrary geometry.

In Cebula and Taler [12], a space marching method is applied to
reconstruct the transient heat flux on the outer surface of a hollow
cylinder from temperature measurements inside the wall. Gram’s
polynomials smooth the input temperature time series to increase
the robustness of the algorithm to measurement noise. The results
are verified against CFD predictions.

In Mohammadiun [35], the conjugate gradient method (CGM)
with adjoint equation is adopted to estimate the heat flux on the
outer surface of a three-layer hollow cylinder from temperatures
sampled at one point in the domain. Inner and side surfaces are
insulated. The governing equations are discretized with finite-
difference methods. No regularization is introduced because the
proposed method is stable to measurement noise. The results are
verified by numerical examples. A mesh independence test is
performed.

In Guo et al. [21], temperatures on the inner wall of a horizontal
T-junction with mixing flows are found from those on the outer
wall, which is insulated, by performing least-squares optimization.
Conjugate gradient and steepest descent methods are combined to
solve the IHCP. A finite difference method is applied to solve the
direct (forward) heat conduction problem (DHCP). Singular spec-
trum analysis is used to denoise the input temperature histories.
Mesh and time-step independence tests are performed.

In spite of the many attempts to properly address boundary
IHCPs, producing accurate, stable solutions to these problems is
still a demanding challenge, especially if transients are fast and
heat fluxes are highly varying in space [37]. Consequently, it is
desirable to devise a theoretically well-grounded approach, which

could provide reliable results in the presence of experimental
noise, handle 3D geometries, and include temperature-dependent
material properties, with no a priori information about the func-
tional forms of the unknown boundary conditions.

In this work, we tried to do so by using a hybrid optimization
algorithm, which employs the nonlinear CGM combined with an
adjoint equation. A finite element discretization is adopted to solve
the primal, dual, and sensitivity sub-problems. The problem is sta-
bilized by Tikhonov regularization.

This article is structured as follows: the method employed is
detailed in Section 2. Some results are shown in Sections 3.1 and
3.2. In the former case, temperatures on the inner boundary of
an annulus are estimated from data on its outer boundary, whereas
in the latter case, temperatures on the outer boundary of an annu-
lus are estimated from data on its inner boundary. The relevance of
the stopping criterion is stressed in the former case. The mesh
independence of the results is assessed in the latter case. Some
equations from Section 2 are proved in Appendices A and B.

2. Method

Two cases are considered: Test Problems 1 and 2 – see Fig. 1. In
both cases, our inverse problem is solved by overspecifying the
boundary conditions on Cg: in the inverse problem, the tempera-
ture time series on boundary Cu as well as the heat flux time series
on boundary Cu are assumed to be unknown, whereas the initial
temperature distribution, the temperature time series on boundary
Cg as well as the heat flux time series on boundary Cg are assumed
to be known. The former and latter heat flux time series are termed
quðx; tÞ and qgðx; tÞ, respectively.

The inverse problem can be thought of as the minimization of
the following objective function:

J ðqu; kÞ ¼
1
2
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0
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Nomenclature

Acronyms
CGM conjugate gradient method
DHCP direct (forward) heat conduction problem
IHCP inverse heat conduction problem

Greek symbols
a optimal step size
b conjugation coefficient
c regularization parameter
C boundary
Cj boundary where qj is prescribed
Dqu direction in which qu is perturbed
e instantaneous error
g time-integrated error
h solution to the sensitivity problem
# angle
k thermal conductivity
l mean of the normal distribution
n standard deviation of the Gaussian noise
q density
r standard deviation of the normal distribution
/ solution to the dual problem
X spatial domain

Roman symbols
c specific heat
h convective heat transfer coefficient
J objective function
k iteration number
n outward-pointing unit normal vector
p conjugate search direction
qj heat flux
t time
tf final integration time
tmax end time
T solution to the primal problem
T time domain 0; tmax½ �
x spatial coordinate
Y noise-free solution to the DHCPeY initial noise-free temperature
Y1 temperature of the medium

Subscripts
g related to the known heat flux
u related to the unknown heat flux
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