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a b s t r a c t

A model is developed for double diffusive convection in a bidisperse porous medium. Double diffusive
convection is convective movement of fluid due to temperature and salt gradient effects. A bidisperse
porous medium is one where there are pores known as macropores, but the solid skeleton contains cracks
or fissures which give rise to a porosity in the skeleton, known as microporosity. We concentrate on the
case of a single temperature field and attention is focussed on the situation where the layer is heated
from below and simultaneously salted from below.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

There is much current interest in the behaviour of double poros-
ity, or bidispersive, porous materials. A double porosity material is
one which possesses the normal pore structure, such pores being
known as macropores, but, the solid skeleton has cracks or fissures
in it and this gives rise to a second porosity, the smaller pores being
referred to as micropores. Heat and mass transfer in a bidispersive
porous material has been of interest in the chemical engineering
field for some time now, see e.g. Burghardt et al. [1], Szczygiel
[2–4], Valus & Schneider [5]. The interest in heat and mass transfer
in a bidispersive porous material is driven by the many real prac-
tical applications of these phenomena, for example, to landslides,
see e.g. Montrasio et al. [6], Borja et al. [7], Borja & White [8],
Pooley [9] and Scotto di Santolo & Evangelista [10]. Another impor-
tant research area for heat and mass transfer in a bidisperse porous
medium is in biporous wicks in heat pipes, see e.g. Taqvi et al. [11],
Lin et al. [12], Mottet & Prat [13], Yeh et al. [14]. A further mundane
area involves stockpiling coal, Hooman & Maas [15], Hooman et al.
[16]. Relatively small pieces of coal are stockpiled but the coal itself
contains small pores. The porosity of the stockpile is usually higher
than that in the solid coal, and the fact that these piles can self heat
makes an analysis and understanding of heat transfer vital to pre-
vent self combustion. There are many other applications of bidis-
persive porous media and lots of these are mentioned in the
monograph by Straughan [17].

Thermosolutal porous convection, also known as double
diffusive porous convection, involves fluid movement in a porous

medium in a non-isothermal situation where there is a salt dis-
solved in the fluid. In porous media this convection for a single
porosity medium was analysed in the fundamental article of Nield
[18]. Many subsequent articles have appeared dealing with linear
instability, but also clever analyses of nonlinear stability, see e.g.
Joseph [19,20], Barletta & Nield [21], Mulone [22], Love et al.
[23], Simmons et al. [24], Deepika & Narayana [25], Deepika [26],
Straughan [27]. The nonlinear stability aspect of thermosolutal
convection in a porous medium from an energy method viewpoint
is the focus of attention of Lombardo et al. [28], with further infor-
mation being included in the books by Straughan [29,30].

Fundamental theories for thermal convection in a bidisperse
porous medium were developed and analysed by Nield and Kuz-
netsov [31–35] and by Nield [36]. This work is reviewed in
Straughan [30]. Falsaperla et al. [37] and Gentile & Straughan
[38] continued analysis with the Nield-Kuznetsov models but they
restrict attention to the case where only one temperature is pre-
sent whereas Nield and Kuznetsov [32] allowed for different tem-
peratures in the fluid in the macro and micro pores. Further work
using the single temperature model has been given by Gentile &
Straughan [39] and by Franchi et al. [40].

The aim of this paper is to present a model for fluid flow in a
bidisperse porous medium which allows for thermosolutal convec-
tion, i.e. for convective motion incorporating temperature and salt
effects. We employ a single temperature and we analyse in detail
the problem of determining the onset of convective movement
when the layer is heated from below. Equations are derived which
allow for the layer to be salted below or above, although we con-
centrate on the more interesting, and more complicated, case of
salted from below.
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We also incorporate the Soret effect, see e.g. Soret [41], Platten
[42], Straughan [30], p. 40. The effect of a temperature gradient on
mass transfer in a bidisperse porous medium may well be of much
interest. We note that in the case of a single porosity body the
problem of thermosolutal convection in a porous medium taking
into account the Soret effect has been the topic of the recent article
by Deepika [26]. The analysis of Deepika [26] effectively concen-
trates on the heated below - salted above case and so there is no
overlap with the present work, which is also as far as we are aware
the first analysis of double diffusive convection in a bidispersive
porous medium.

2. Governing equations

Let / be the porosity associated to the macropores, so that / is
the ratio of the volume of the macropores to the total volume of the
saturated porous material. Let � be the porosity associated to the
micropores, i.e. � is the ratio of the volume occupied by the micro-
pores to the volume of the porous body which remains once the
macropores are removed. Thus the fraction of volume occupied
by the micropores is �ð1� /Þ.

We follow Nield and Kuznetsov [32] and use sub or superscript f
and p to denote a quantity associated to the macropores or micro-

pores, respectively. Let V f
i and Vp

i be the pore averaged velocities in
the macro and micropores. Then the analogous seepage velocities

U f
i and Up

i are given by

U f
i ¼ /V f

i ; Up
i ¼ �ð1� /ÞVp

i :

We assume the density in the buoyancy force is a linear func-
tion of the temperature, T, and salt concentration, C, and so

q ¼ q0 1� aðT � T0Þ þ aCðC � C0Þ½ �
where a is the thermal expansion coefficient and aC is the equiva-
lent expression for the salt field. Then, employing a Boussinesq
approximation the momentum and continuity equations in the
macropores and micropores are derived as in Nield and Kuznetsov
[32], Falsaperla et al. [37] or Gentile & Straughan [38], and are

0 ¼ � l
Kf

U f
i � pf

;i � f U f
i � Up

i

� �
þ gq0akiT � aCq0gkiC;

U f
i;i ¼ 0;

0 ¼ � l
Kp

Up
i � pp

;i � f Up
i � U f

i

� �
þ gq0akiT � aCq0gkiC;

Up
i;i ¼ 0;

ð1Þ

where l is the dynamic viscosity of the fluid and f is an interaction
coefficient, namely the coefficient for momentum transfer between
the macro and micro phases, see Nield & Kuznetsov [32]. The quan-
tities pf and pp are the pressures in the macro and micro phases,
k ¼ ð0;0;1Þ and g is the size of the gravity vector. The terms Kf

and Kp are the permeabilities in the macro and micro phases.
Throughout we employ standard indicial notation.

The equation governing the energy balance, i.e. the equation for
the temperature field is derived from the equations of Nield & Kuz-
netsov [32] as in Gentile & Straughan [38] and has the form

ðqcÞmT ;t þ ðqcÞf U f
i þ Up

i

� �
T ;i ¼ jmDT; ð2Þ

where q is the density, c is the specific heat at constant pressure, f
denotes the macro phase and

ðqcÞm ¼ ð1� �Þð1� /ÞðqcÞs þ /þ �ð1� /Þ½ �ðqcÞf ;
jm ¼ ð1� �Þð1� /Þjs þ /þ �ð1� /Þ½ �jf ;

where ðqcÞs; ðqcÞf ;jf and js are the products of density and
specific heat in the solid skeleton and in the fluid in the pores,

respectively, and the thermal conductivity of the fluid and solid,
respectively.

We need to derive an equation for the concentration. To this
end we note that when the diffusion coefficient includes the Soret
effect it has form

JC ¼ �kCrC � kCSTrT

where JC is the diffusion coefficient and ST is a Soret coefficient. We
thus write differential equations for the macro and micro phases as

@C
@t

þ V f
i

@C
@xi

¼ kf
CDC þ k f

CS
f
TDT; ð3Þ

and

@C
@t

þ Vp
i

@C
@xi

¼ kpCDC þ kpCS
p
TDT: ð4Þ

Multiply (3) by / and (4) by �ð1� /Þ and add the results. In this
way we derive the following equation for the concentration field
throughout the porous medium continuum,

�1
@C
@t

þ U f
i þ Up

i

� � @C
@xi

¼ �2DC þ SDT; ð5Þ

where

�1 ¼ /þ �ð1� /Þ; �2 ¼ /k f
C þ �ð1� /ÞkpC ;

S ¼ /S f
T þ �ð1� /ÞSpT :

Thus, the governing system of equations for double diffusion in
a bidisperse porous medium consist of (1), (2) and (5) for the vari-

ables U f
i ;U

p
i ; p

f ; pp; T and C.

3. Basic solution and perturbation equations

We now investigate the problem of thermosolutal convection in
a plane layer of bidispersive material. Let the saturated porous
material occupy the horizontal layer 0 < z < d; fðx; yÞ 2 R2g and
satisfy Eqs. (1), (2) and (5). The boundary conditions are,

U f
i ni ¼ 0; Up

i ni ¼ 0; on z ¼ 0;d;
T ¼ TL; z ¼ 0; T ¼ TU ; z ¼ d;

C ¼ CL; z ¼ 0; C ¼ CU ; z ¼ d;

ð6Þ

where ni is the unit outward normal to the planes z ¼ 0 and
z ¼ d; TL; TU ;CL;CU are constants with TL > TU . We derive the pertur-
bation equations from the steady solution under the boundary
conditions

CL > CU ; salted below; ð7Þ
or

CL < CU ; salted above: ð8Þ
The basic conduction solution is then

U f
i � 0; Up

i � 0; T ¼ TL � bz; C ¼ CL � bCz; ð9Þ

where

b ¼ TL � TU

d
> 0; bC ¼ CL � CU

d
: ð10Þ

When the layer is salted below bC > 0 whereas when the layer
is salted above bC < 0.

Let uf
i ;u

p
i ;p f ;pp; h; c be a perturbation to the steady solution (9).

The perturbations are non-dimensionalized with length scale D,
time scale T , velocity scale U, temperature scale T], concentration
scale C], where
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