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a b s t r a c t

A new strategy for mixing inside drops is introduced utilizing the action of surface shear viscosity. A drop
is constrained by two sharp-edged contact rings that are differentially rotating. Differential rotation of
the rings is conveyed by surface shear viscosity into the bulk fluid, thus enhancing the mixing when com-
pared to the quiescent case. Primarily, mixing was considered in a configuration where one hemisphere is
initially at a different concentration than the other. When inertia becomes important, the mixing time is
reduced by an order of magnitude compared to the case where the two rings are stationary. Various driv-
ing speeds of one ring or counter rotation of two rings are considered for the hemispherical initial con-
centration. Mixing of a core–shell initial concentration was also considered. This approach to mixing in a
drop is found to be an effective containerless mixer and may be utilized in chemical and biological appli-
cations where solid-wall interactions are deleterious.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Aqueous systems completely free of surface-active impurities
are rarely found in nature or man-made systems, and their realiza-
tion even in the laboratory is nearly impossible [1]. Any molecule
that is amphiphilic, with both hydrophilic and hydrophobic parts,
is thermodynamically favored to accumulate at the free surface,
usually forming into a monomolecular layer. The presence of a
monolayer generally reduces the surface tension, r, in turn making
the interface behave elastically and giving rise to the Marangoni
stress. Monolayers can also give rise to two surface (excess) vis-
cosities, namely the surface shear viscosity, ls, and the surface
dilatational viscosity, js [2,3]. In many practical situations, the
transport of mass, momentum, and energy are strongly affected
by the viscoelastic nature of the monolayer [4].

Surface elasticity and its impact on the coupling between the
bulk and interfacial flow via the Marangoni stress is well docu-
mented in the literature. Intrinsic surface viscosities are now
receiving much attention, in part because of the interest in devel-
oping mechanistic models capable of predicting the flow in sys-
tems other than surface viscometers. Surface shear viscosity
causes the interface to act like a membrane capable of propagating
shear stress in the plane of the interface. Previously reported
experiments [5,6] have unambiguously documented the dramatic
effect that surface shear viscosity can have on bulk flow. On the

other hand, the action of surface dilatational viscosity is more com-
plicated since it acts in unison with surface elasticity, and its char-
acterization remains controversial [7–9].

A flow geometry consisting of a cylindrical dish where a circular
knife edge touches the free surface is widely used to study surface
shear viscosity. Recent numerical and centimeter-scale experimen-
tal studies of the flow in the knife-edge viscometer, including both
steadily-driven and oscillatory-driven regimes, report a significant
amount of flow in the bulk liquid, even for moderate values of sur-
face shear viscosity [10–13]. The present study is inspired by those
observations.

Here, we examine the flow in the bulk of a spherical drop, with
the primary goal of exploiting its mixing capabilities. To form a
centimeter scale spherical drop would require microgravity and
such an effort is already being undertaken [14]. We explore mixing
in millimeter-scale drops which can, in principle, be formed in the
laboratory. Achieving mixing inside a drop is advantageous due to
the reduced amount of reagents and waste generated, as well as
the potential for faster mixing times [15,16]. Mixing within drops
can also avoid contact between the drop liquid and solid walls,
which may be deleterious in some applications due to sorption,
chemical or electrostatic interactions. In systems involving
microorganisms, complications due to wall adhesion are avoided
by using a drop. Furthermore, in applications involving live cells
or tissues, damage caused by large shear stresses found in bioreac-
tors with blades or mixing bars is also avoided [17–20].

Several strategies for mixing within drops have been previously
presented. One technique is to induce mixing in drops using a
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serpentine microchannel [21]. A major challenge to drop mixing in
microchannels is the low flow inertia. Other strategies for mixing
inside drops impose direct excitation of the drop through various
mechanisms, including electrowetting, acoustic, electric, magnetic
or mechanical excitation [22–29]. Electrowetting, electric field and
magnetic field excitation generally pose specific requirements on
the electromagnetic properties of the fluid-solid system, restricting
their applications. Another strategy for mixing within a drop is to
use acoustic levitation and excitation. However, acoustic levitation
leads to excessive heating of the fluid and relatively slow mixing
due to the high frequencies involved [30]. Also, acoustic levitation
requires sophisticated hardware to produce the high-frequency
sound waves [31].

Fig. 1 shows a schematic of a ring-sheared drop, where the drop
is constrained by two sharp-edged contact rings, one on the north-
ern hemisphere and the other on the southern hemisphere. As will
be shown in this paper, differential rotation of the rings imparts
interfacial shear which in turn drives flow in bulk of the drop. Thus,
surface shear viscosity can be used to set the fluid inside a drop
into azimuthal motion without the need for a moving solid wall
with large contact area. Furthermore, at non-negligible ring speeds,
fluid inertia produces secondary meridional flow which enhances
the mixing. It has been shown in the knife-edge viscometer that
the thickness of the knife-edge only has a minor effect [32]. Thus,
even in the limit of a contact circle (zero knife-edge thickness), the
bulk fluid motion in the drop, including secondary meridional flow,
is essentially the same as the bulk flow produced by a finite thick-
ness knife edge [10]. Thus, for all practical purposes, the ring-
sheared drop can be considered as a containerless droplet mixer.

For the present study, we consider a drop constrained between
two rings at polar angles h ¼ p=4 and 3p=4 from the north pole, as
shown schematically in Fig. 1. Several different ways of driving the
ring-sheared drop are considered, including steady and oscillatory
rotation of one ring, and the steady counter rotation of both rings.
The quiescent case, corresponding to both rings being stationary, is
the control case in which mixing is solely due to diffusion. Aside
from the north–south initial distribution depicted in Fig. 1, we also
consider mixing in a core–shell configuration.

2. Governing equations

Consider a drop of radius R, constrained between two rings of
inner radius A ¼ R=

ffiffiffi
2

p
, with the top ring rotating at an angular

speed of X1 and the bottom ring rotating at X2. First, a north–south
configuration of initial concentrations is considered, where the
drop concentration is c1 in the northern hemisphere and c2 in
the southern hemisphere. Then, mixing in a drop with an initial
core–shell configuration is considered, where initially a core of
high concentration is surrounded by a shell of relatively lower

concentration. In the present study, these concentrations represent
a passive scalar in the bulk liquid. This passive scalar–bulk liquid
system forms a dilute solution such that the passive scalar does
not change the viscosity of the solution, m. The binary diffusivity
of the passive scalar in the solution is D. The ratio of these is the
Schmidt number, Sc ¼ m=D.

The flow in the drop is governed by the Navier–Stokes equa-
tions. Using R as the length scale and the viscous time R2=m as
the time scale, the non-dimensional Navier–Stokes equations are

@u=@t þ ðu � $Þu ¼ �$pþ $2u; $ � u ¼ 0: ð1Þ
Using non-dimensional spherical coordinates ðr; h; /Þ, where r

is the radius, h is the polar angle and / is the azimuth angle, the
non-dimensional velocity is u ¼ ðu; v ; wÞ and p is the non-
dimensional pressure.

Passive scalar transport in the drop is governed by an
advection-diffusion equation, also non-dimensionalized with
length scale R and time scale R2=m, and c1 for the concentration.
The non-dimensional advection-diffusion equation is

@c=@t þ u � $c ¼ Sc�1$2c; ð2Þ
where c is the non-dimensional concentration. No-flux boundary
condition for the concentration was applied at the free surface,
r ¼ 1.

For most of this study, the north–south configuration is consid-
ered, with the initial concentration set to c ¼ 1 in the upper half of
the drop and c ¼ 0 in the lower half of the drop. This mimics the
orientation of two coalesced drops of equal volume. Such a config-
uration has been produced experimentally (e.g. see Fig. 12 in
Nowak et al. [33]). A core–shell initial configuration with c ¼ 1 in
the core and c ¼ 0 in the shell is also considered.

The rings are non-wetting with sharp square corners so that
they make circular contact lines on the surface of the drop
(r ¼ 1) at polar angles h ¼ p=4 and 3p=4. At these contact lines,
there is no-slip and so the velocities are

ðu; v ; wÞjcontact rings ¼ ð0; 0; Re1;2ArÞ; ð3Þ

where Re1;2 ¼ X1;2R
2=m are the Reynolds numbers (ratios of viscous

time to rotation time for each ring), with Re1 for the top ring and Re2
for the bottom ring, and Ar ¼ A=R is the ratio of ring radius to drop
radius (taken to be 1=

ffiffiffi
2

p
). Re1 and Re2 are varied depending upon

the configuration. We present results for three configurations: (i)
the steady rotation of one ring with Re1 ¼ constant and Re2 ¼ 0,
(ii) the oscillatory rotation of one ring with Re1 ¼ Re sinxt and
Re2 ¼ 0, and (iii) the steady counter rotation of the two rings with
Re1 ¼ �Re2 ¼ constant.

The air–liquid interface is taken as non-deforming in this study.
Thus, the surface stress balance in the radial (surface-normal)
direction reduces to

ujr¼1 ¼ us ¼ 0: ð4Þ
The tangential velocity boundary conditions on the interface are

given by the stress balance between the bulk and interfacial flows
through the Boussinesq–Scriven surface model [2,3,34]. This sur-
face model is applicable to Newtonian interfaces and is based on
a balance between the viscous stresses in the bulk and the various
stresses on the interface, including stresses due to surface tension
gradients and surface dilatational and shear viscosities. In this
model, the surface stress tensor is given by:

T s ¼ ½rþ ðjs � lsÞ$s � us�Is þ 2lsDs; ð5Þ

where $s is the surface gradient operator, us is the surface velocity
vector, Is is the surface projection tensor and Ds is the surface defor-
mation tensor, such that

Fig. 1. Schematic of the ring-sheared drop with an initial north–south configura-
tion. Blue represents a concentration of c1 and white represents a concentration of
c2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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