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a b s t r a c t

In this work, an immersed boundary-discrete unified gas kinetic scheme (IB-DUGKS) is proposed and pre-
sented for the simulation of natural convection with a curved body surface. In this method, two distribu-
tion functions are employed for velocity and temperature field, respectively, and they are coupled under
the Boussinesq approximation. The IB-DUGKS provides an effective way for the DUGKS to treat a curved
boundary. The Strang-splitting method is used to handle the IB force, and its accuracy is first validated by
comparing with another implementation method for the base case of natural convection in a square cav-
ity. The widely used direct-forcing immersed boundary method is adopted due to its simplicity, with an
iteration procedure to ensure the accuracy of no-slip condition on the immersed boundary. Natural con-
vection between an outer square and an inner circular cylinder is then simulated under different geomet-
ric configurations, including different aspect ratios and locations of the cylinder relative to the cavity. The
numerical results are in excellent agreement with the results from the literature, confirming the accuracy
and robustness of the proposed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection between a body and an enclosure has
received a great deal of attention in the past decades, as it is rele-
vant to many industrial applications such as heat exchangers, cool-
ing of electronic equipment, and thermal storage systems [1]. In
this paper, the specific geometric configuration of interest is a cold
outer square enclosure and a hot inner circular cylinder. The natu-
ral convection problem of this geometric configuration has also
been investigated by other people in recent years, such as Mou-
kalled and Acharya [2] and Shu and Zhu [3], and has often served
as a benchmark case to verify new numerical methods [4–6]. In
the present study, an immersed boundary-discrete unified gas
kinetic scheme (IB-DUGKS) is developed to investigate such a nat-
ural convection problem involving a curved surface.

IB-DUGKS is a kinetic method solving a model Boltzmann equa-
tion. Unlike the traditional CFD methods which are based on solv-
ing the Navier–Stokes equations, the kinetic methods are based on
the kinetic theory. The kinetic methods provide a connection
between the macroscopic hydrodynamics and the microscopic

physics, and are sometime referred to as mesoscopic methods.
Among the different kinds of kinetic methods, the gas kinetic
scheme (GKS) [7] and lattice Boltzmann method (LBM) [8] are
widely used and have been developed rapidly in recent years.
Based on GKS, a unified GKS (UGKS) for all Knudsen number flows
was developed by Xu and Huang [9]. And recently, the DUGKS was
developed by Guo et al. which combines the advantages of UGKS
and LBM [10,11]. It is a finite volume method and derived directly
from the Boltzmann equation. Compared with LBM, the DUGKS is
more flexible in application, such as fully decoupled time and
space steps, and also a non-uniform mesh can be easily employed.

Since DUGKS is relatively new, only a few studies have emerged
to explore the potential applications of DUGKS. Wang et al. [12]
proposed a coupled DUGKS for Boussinesq flows and the
Rayleigh-Bénard convection and natural convection in a square
cavity were investigated. Wu et al. [13] proposed a general method
to allow the DUGKS to handle an external force term by adding the
force term into the Boltzmann equation and DUGKS procedure. Zhu
et al. [14] successfully extended the DUGKS to unstructured
meshes. Guo and Xu [15] extended the DUGKS to simulate the
whole multiscale heat transfer process based on the phonon Boltz-
mann transport equation. Bo et al. [16] investigated 3D Taylor–
Green vortex flow and turbulent channel flow using DUGKS. Zhu
et al. [17] developed an open source OpenFOAM solver for the
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Boltzmann model equation with DUGKS. Wang et al. [18] con-
ducted a systematic numerical study of three-dimensional natural
convection in a differentially heated cubical cavity with Rayleigh
number up to 1010. Recently, the IB-DUGKS has been developed
for isothermal flows with curved boundary by Tao et al. [19]. So
far, DUGKS has not been applied to heat transfer problems with a
curved boundary.

To incorporate curved boundaries, we shall consider the
immersed boundary method (IBM) which was first proposed by
Peskin in the early 1970s [20]. Due to its simplicity in implemen-
tation and flexibility in application, it has drawn particular atten-
tion in the recent decades [21–23]. The main idea of IBM is to
use two set of grids for the simulation, with a fixed Eulerian grid
covering the whole domain for the fluid, the Lagrangian points rep-
resenting the immersed boundary. The interaction between the
fluid and the immersed boundary is handled through the IB force.
IBM was first used to simulate elastic material boundary, and the
IB force on the boundary points can be determined by the deforma-
tion under Hooke’s law [20,21]. When the force is distributed to
the fluid through a smooth delta function, the effect of the real
boundary can be approximated by the IB force of the immersed
boundary. The original method to calculate the IB force can be
called the penalty or feedback forcing method. Another popular
way to decide the IB force is the direct forcing method proposed
by Mohd-Yusof [22]. It is simpler to implement. But the original
direct forcing method cannot ensure the no-slip condition on the
boundary due to the delta function interpolation errors causing
the streamlines to penetrate through the immersed boundary. To
avoid this problem, the multi-direct forcing method and the impli-
cit direct forcing method were developed. The multi-direct forcing
method was first used by Luo et al. [24], and the details will be
described in Section 2.2. The implicit direct forcing method was
first proposed by Wu et al. [25]. In this implicit method, one does
not calculate the IB force. Instead, the velocity corrections at all
boundary points are considered as unknowns which are computed
in such a way that the non-slip boundary condition at the bound-
ary points is enforced. The drawback of the implicit direct forcing
method is that one need to solve a matrix system, but the no-slip
boundary condition can be satisfied precisely. Besides these two
main methods (feedback forcing and direct forcing methods), there
are many other ways to implement the IBM. One of them is the
interpolation-based scheme proposed by Kim et al. [26,27], which
is based on a finite volume approach on a staggered mesh together
with a fractional-step method. The momentum forcing and the
mass source/sink are applied on the body surface or inside the
body to satisfy the no-slip boundary condition on the immersed
boundary and the continuity for the cell containing the immersed
boundary, respectively. The heat source/sink is introduced on the
body surface or inside the body to satisfy the isothermal or iso-
heat-flux condition on the immersed boundary. A second-order
linear or bilinear interpolation scheme is used to satisfy the no-
slip velocity on the immersed boundary, which is numerically
stable regardless of the relative position between the grid and
the immersed boundary. Kim et al. had validated their method
with isothermal flow and heat transfer problems [26,27], which
also showed the capability of their method. One can find other ver-
sions of the IBM from the literature or from Refs. [28–30].

Within the conventional CFD which solves the Navier-Stokes
equations directly, IBM is well established for isothermal prob-
lems. A few non-isothermal studies using the IBM are noted here.
Kim et al. [4] investigated natural convection between a cold outer
square and a hot inner circular cylinder with the interpolation-
based IBM. Jiong et al. [6] investigated natural convection in a
square enclosure with feedback forcing IBM. Wang et al. [31]
investigated natural and forced convection problems with the
direct forcing IBM. These and other studies [32–35] reveal that

IBM is a competent method for solving a thermal flow within con-
ventional CFD.

The aim of present work is to combine DUGKS (a mesoscopic
flow solver) and IBM (a curved boundary treatment) in order to
formulate a mesoscopic simulation tool for natural convection
problems with complex geometries. The rest of this paper is orga-
nized as follows. In Section 2, a brief introduction of DUGKS and
IBM, as well as how to couple the two methods are described. In
Section 3, the accuracy of the present method is validated by com-
paring the simulation results for several benchmark problems with
the data from the literature. Finally, a brief summary and conclu-
sions are presented in Section 4.

2. Simulation method

In this section, the DUGKS algorithm is described first. Then the
direct-forcing immersed boundary method is introduced. At last
two different ways for the DUGKS to incorporate an external force
term are given.

2.1. Discrete unified gas kinetic scheme

DUGKS was first proposed by Guo et al. [10], one can also find
the details about this method from the previous studies [12,13].
Here a brief introduction of the method is given.

2.1.1. DUGKS for velocity field
DUGKS begins with the Boltzmann equation with the BGK col-

lision model [10]

@f
@t

þ n � rf ¼ X � f eq � f
sv

; ð1Þ

where f is the distribution function for the velocity field, f = f(x, n, t)
with space x, time t and velocity n. X is the collision term, sv is the
relaxation time and related to the viscosity coefficient. feq is the
Maxwellian equilibrium state and has the following form:

f eq ¼ q
ð2pRT1ÞD=2

exp �ðn� uÞ2
2RT1

 !
; ð2Þ

where q is density of the fluid, R is the gas constant, T1 is a constant
temperature, u is the macroscopic velocity of the fluid, D is the spa-
tial dimension. Here RT1 = cs

2, cs is the artificial sound speed. The
hydrodynamic variables can be obtained as:

q ¼
Z

fdn; qu ¼
Z

nfdn: ð3Þ

The DUGKS is a finite volume method, and the flow domain can
be divided into a set of control volumes Vj which are centered at xj.
Integrating Eq. (1) on Vj from time tn to tn+1, and using the midpoint
rule for the integration of the convection term and trapezoidal rule
for the collision term, one can obtain

f nþ1
j � f nj þ

Dt
jVjj F

nþ1=2 ¼ Dt
2
ðXnþ1

j þXn
j Þ; ð4Þ

where Dt is the time step, and

Fnþ1=2 ¼
Z
@Vj

ðn � nÞf ðx; tnþ1=2ÞdS ð5Þ

is the microflux across the interface, n is the unit vector
normal to the cell interface. But Eq. (4) used to update the distribu-
tion function f is implicit, so two new distribution functions are
defined

ef j ¼ f j �
Dt
2
Xj;

ef þj ¼ f j þ
Dt
2
Xj: ð6Þ
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