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a b s t r a c t

In this paper, the element differential method is extended to solve a transient nonlinear heat conduction
problem with a heat source and temperature-dependent thermophysical properties for the first time. The
transient term is discretized by employing a finite difference scheme. An iterative methodology is devel-
oped to deal with the nonlinearity caused by temperature-dependent thermophysical properties.
Examples of two-dimensional (2D) and three-dimensional (3D) problems are given to validate the pre-
sent method for solving multi-dimensional transient nonlinear heat conduction problems. The results
show that the present EDM provides a promising way that is effective and with high accuracy for solving
multi-dimensional transient nonlinear heat conduction problems.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Solving multi-dimensional transient nonlinear heat conduction
problems is of extreme importance in many engineering applica-
tions [1–5], in which multi-dimensionality, transient term and
temperature-dependent thermophysical properties are all
involved. For solutions of heat conduction problems, there are
mainly three ways: analytical, numerical, and experimental. The
analytical solutions are limited to very simple problems, while
experiments are always expensive or difficult to be carried out.
Therefore, numerical approaches are dominant, and various tech-
niques have been proposed, such as the finite difference method
(FDM) [6,7], finite volume method (FVM) [8,9], finite element
method (FEM) [10,11], meshless method (MLM) [12,13], boundary
element method (BEM) [14–16] and some other innovative tech-
niques [17–19].

Each method has its advantage and disadvantage, which has
been reviewed in detail in Ref. [20]. As for transient nonlinear heat
conduction problems, FDM is more suitable to solve problem with
simple geometric configurations, considering accuracy, stability
and efficiency. FEM is most powerful for solving complicated prob-
lems with complex geometries, and several commercial software is

available, such as ANSYS, ABAQUS, NASTRAN and so on. However,
the FEM in the commercial software is difficult to be applied in
inverse analysis [21–23] by using the complex variable differenti-
ation method for determining sensitivity coefficients. BEM would
require further treatment of residual domain integrals caused by
the transient term and the nonlinearity.

Although heat conduction problems have been extensively
investigated, few references, associated with new techniques, have
simultaneously dealt with heat source, multi-dimensionality, tran-
sient term, and temperature-dependent thermophysical proper-
ties. This paper presents a general approach and attempts to
solve multi-dimensional transient nonlinear heat conduction prob-
lems with heat sources.

Recently, Gao and coworkers have proposed a new approach
[20,24,25], element differential method (EDM), for solving
second-order differential equations. This approach is based on
the use of isoparametric elements as used in the standard FEM. A
set of explicit formulations to compute the first and second order
spatial derivatives were derived for two-dimensional and three-
dimensional problems. No any mathematical principles or integra-
tions are required. EDM is a strong-form technique, and the most
important feature of the proposed method is that the derived spa-
tial derivatives can be directly substituted into the governing equa-
tion and boundary conditions to form the final system of algebraic
equations. Therefore, the EDM is very easy to code and program in
dealing with engineering problems with complicated governing
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equations and boundary conditions, and the potential of the EDM
in engineering applications has been partly validated in Ref. [20].

In the previous work, only the steady-state was considered. In
this paper, the element differential method is extended to solve
multi-dimensional transient nonlinear heat conduction problems
with heat sources for the first time.

2. Transient nonlinear heat conduction problem

The governing equation of the transient nonlinear heat conduc-
tion problem with temperature-dependent thermophysical prop-
erties and a heat source can be expressed as

@
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kij½Tðx; tÞ� @Tðx; tÞ

@xj

� �
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The boundary conditions are

Tðx; tÞ ¼ T x 2 C1 ð2Þ

qðx; tÞ ¼ �kij½Tðx; tÞ� @Tðx; tÞ
@xj

ni ¼ �q x 2 C2 ð3Þ

qðx; tÞ ¼ h½Tðx; tÞ � T1� x 2 C3 ð4Þ
where C1 [ C2 [ C3 ¼ C, n is the outward normal to the boundary C,
h is the heat convective coefficient; T , �q and T1 are the prescribed
temperature, heat flux and surrounding temperature on the bound-
ary, respectively. xi is the i-th component of the spatial coordinates
at point x, k is thermal conductivity, q is density, c is mass specific
heat, T is temperature, t represents time, and Q represents the heat
source. The repeated subscripts i and j represent the summation
through its range which is 2 for 2D and 3 for 3D problems.

3. Element differential method for solving transient nonlinear
heat conduction problems

3.1. Shape functions

The heat conduction problem consists of first and second order
partial derivatives of temperatures with respect to spatial

coordinates. The derivatives are derived by using isoparametric
elements. The key mathematical quantities characterizing the
isoparametric elements are the shape functions. The shape func-
tions for 1D isoparametric elements can be determined by the
Lagrange interpolation formulation [20]:

LmI ðnÞ ¼
Ym

i¼1;i–I

n� ni
nI � ni

ðI ¼ 1 � m;�1 6 n 6 1Þ ð5Þ

where m is the number of interpolation points, n is the isoparamet-
ric coordinate. The shape functions for 2D and 3D problems can be
formed based on the 1D shape functions, which can be expressed as
follows.

Naðn;gÞ ¼ LmI ðnÞLnJ ðgÞ ð6Þ

for 2D elements, and

Naðn;g; fÞ ¼ LmI ðnÞLnJ ðgÞLpKðfÞ ð7Þ

for 3D elements.
In Eqs. (5)–(7), the superscripts m, n, and p are the numbers of

the interpolation points along n, g and 1 directions, respectively,
and the subscript a is determined by the permutation of the sub-
scripts I, J, and K (for 3D case) [20,24].

3.2. Derivatives of elemental shape functions with respect to global
coordinates

Any physical quantity varying over an isoparametric element
can be expressed in terms of their nodal values of the element:

xi ¼ Naxai ð8Þ

T ¼ NaT
a ð9Þ

where xai and Ta are the values of coordinates and temperature at
node a, and the repeated index a represents the summation over
all nodes. Based on Eqs. (8) and (9), one can obtain the first and sec-
ond order derivatives:

@T
@xi

¼ @Na

@xi
Ta ð10Þ

Nomenclature

A coefficients matrix
b vector
c mass specific heat, J/(kg �C)
h heat convective coefficient, W/(m2 �C)
J Jacobian matrix
L 1D shape function
i, j, k, l, n subscripts
m the number of interpolation points
N order of equations
Na shape function
Q heat source, W/m3

q heat flux, W/m2

R residual
T temperature, �C
t time, s
w relaxation factor
x vector of unknowns
xi the ith coordinate, m
x x coordinate, m
y y coordinate, m

z z coordinate, m

Greek symbols
C the boundary
D change of variable
d Kronecker delta symbol
q density, kg/m3

f intrinsic coordinate, m
g intrinsic coordinate, m
k thermal conductivity, W/(m �C)
n intrinsic coordinate, m

Subscripts
1 surrounding

Superscripts
0 previous
k kth iteration
m mth
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