FISEVIER

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Cascade-like and cyclic heat transfer characteristics affected by enclosure aspect ratios for low Prandtl numbers

Bin Wang ^{a,b}, Tien-Mo Shih ^{a,b,*}, Xiwen Chen ^a, Richard Ru-Gin Chang ^c, Chen-Xu Wu ^{a,b,*}

- ^a Department of Physics, Xiamen University, 422 Siming South Road, Xiamen 361005, China
- b Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- ^c Shineraytek Optoelectric Company and Zing Semiconductor Corporation, Shanghai 201306, China

ARTICLE INFO

Article history: Received 15 July 2017 Received in revised form 8 February 2018 Accepted 17 March 2018

Keywords:
Low Prandtl number
Aspect ratio
Cascade-like
Cyclic
Heat transfer
Natural convection
Vortices collapse
COMSOL

ABSTRACT

For low Prandtl-number fluids, heat-transfer characteristics under the influence of the aspect ratio for buoyancy-driven recirculating flows in rectangular enclosures (with left hot, right cold, top/bottom insulated walls) behave differently from those for high-Pr fluids. At $Ra=10^6$ and Pr=0.025, as the enclosure widens, time-averaged and hot-wall-spatially-averaged heat transfer first decreases, then cascades downward. Locally, heat transfer peaks at a few locations, and these peaks travel cyclically as time elapses. For completeness, the present study serves as a sequel of a previous high-Pr investigation.

© 2018 Published by Elsevier Ltd.

1. Introduction

Natural convection in rectangular enclosures has attracted considerable attention due to its engineering and science applications in a wide range, such as geophysics, meteorology, chemical and food processing, solar and nuclear power systems, and Czochralski crystal growth among others. Since the aspect ratio (*AR*) of enclosures can significantly affect both hydrodynamic and thermal characteristics in these phenomena for relatively high-*Pr*'s, much effort has been devoted to studying variations of either the enclosure width [1,2] or the enclosure height [3–24].

Wang et al. [1] have focused on the aspect ratio AR in the range of $10^3 \le Ra \le 10^6$, $0 < AR \le 1.5$, and $0.707 \le Pr \le 10000$, and have discovered that the average Nusselt number exhibits mildly zigzag behaviors as the enclosure widens. Lamsaadi et al. [2] have studied heat transfer characteristics for constant heat flux in wider horizontal rectangular cavities while stressing non-Newtonian power-law fluids and various enclosure widths. Elder [3] has conducted a comprehensive experimental investigation of a liquid in a

rectangular cavities with parameters prescribed in the range of $Ra < 10^8, L \le H \le 60L$ and Pr = 1000, in three noticeable regimes. Analytically empirical expressions for different Nusselt numbers associated with tall cavities have been proposed Bejan [4], whose results are consistent well with experimental data [3] and numerical solutions [5]. Both experimental and numerical studies [6–16] for recirculating flows in tall cavities continued to be investigated. Cormack et al. have analytically [17] and numerically [18] investigated free convection in shallow rectangular enclosures. For predicting heat transfer in shallow enclosures, Bejan and Tien [19] have developed comprehensive analytical results for Nusselt numbers corresponding to parallel-flow regime, intermediate-flow regime, and boundary-layer regime, and have demonstrated that their analysis adequately predicted experimental [20] and numerical [17] studies. An experimental investigation with differentiallyheated side walls in a water-filled enclosure has been studied by Bejan et al. [21], who have established a limiting condition in which convection starts to play a critical role in the thermal transport. Recently, Turan et al. successively focused on height effects in laminar natural convection of different fluids [22-24], in rectangular cavities with differentially-heated side walls for a range of various values of Rayleigh number for $0.125L \le H \le 8L$.

In the regime of low *Pr*'s, by contrast, most investigations focus on oscillatory instability [25–35]. Busse [25] has investigated the

^{*} Corresponding authors at: Department of Physics, Xiamen University, 422 Siming South Road, Xiamen 361005, China.

E-mail addresses: tmshih@xmu.edu.cn (T.-M. Shih), cxwu@xmu.edu.cn (C.-X. Wu).

Nomenclature ΔT temperature difference between hot wall and cold wall pressure (Pa) $(=T_h-T_c,K)$ Pr Prandtl number (= v/α) Rayleigh number based on $H = g\beta H^3 \Delta T/(v\alpha)$ two end times of a time interval that covers approxi- Δt Ra mately ten cycles (= $t_2 - t_1, s$) T temperature (K) $\overline{Nu_{avg}}$ time-averaged and hot-wall-spatially-averaged Nusselt time (s) number based on H x-direction velocity (m/s) и \overline{Q}_{cd} time-averaged space-averaged conductive flux along v ν v-direction velocity (m/s) direction (W/m²) χ x coordinate (m) $\overline{Q_{cv}}$ time-averaged space-averaged convective flux along y y coordinate (m) ν direction (W/m²) $\overline{Q_T}$ time-averaged space-averaged total energy flux along y Greek symbols direction (W/m²) thermal diffusivity (m²/s) α aspect ratio based on H (= L/H)AR thermal-expansion coefficient (1/K) β specific heat capacity with pressure kept constant c_p viscosity (kg/(m s)) μ (I/(kg K))ν kinematic viscosity (m²/s) gravitational acceleration (m/s²) density (kg/m³) ρ Н height of the rectangular enclosure (m) h local heat transfer coefficient (W/(m² K)) Subscripts k thermal conductivity (W/(m K))hot h L width of the rectangular enclosure (m) cold С Nu(y)local Nusselt number on the hot wall (= hH/k) initial Nu_{avg} hot-wall-spatially-averaged Nusselt number based on H

instability of convection rolls in a fluid layer heated from below for stress-free boundaries in the limit of small Prandtl number. Hurle et al. [26] have experimentally studied a differentially-heated-boat natural convection problem for molten gallium. In [27], Hart has analyzed the stability of shallow Hadley circulating low-Pr flows contained in a shallow slot. Winters [28] has carried out studies regarding the Pr effect, aspect ratio effect and boundary effect of oscillatory convection in liquid metals in a 2D rectangular enclosure. Kamakura et al. [29] have numerically investigated the oscillatory phenomena in natural convection of low-Pr fluids in a rectangular cavity with horizontal temperature gradient at Pr = 0.01. In [30], Crunkleton et al. have numerically computed the transition from steady to oscillatory flow for Pr = 0.008 in rectangular enclosures. Hung et al. [31] have reported the detailed experimental study of transitions in the convection of a low-Pr fluid driven by a horizontal temperature gradient. Kamotani et al. [32] have focused on three-dimensional effects of oscillatory convections development in rectangular enclosure filled mercury fluids for $Gr > 10^7$. Wakitani et al. [33] have numerically investigated dependence of the onset of oscillation on Pr's, the aspect ratio (AR), and the width ratio (WR) for 3D natural convection at low Pr's from 0 to 0.027 in rectangular enclosures with differentially heated vertical walls. Afrid and Zebib [34] have obtained numerical results for a zero-Pr fluid in an enclosure with AR = 4, and WR = 1 or 2. They have established the pattern of three-dimensional convection and determined the critical value of the Grashof number for the onset of oscillation. Vedantam et al. [35] have investigated the effect of two large AR's (5 and 10) on low-Pr fluids oscillatory behaviors of the Nu for 3D Rayleigh-Bénard convection in a rectangular enclosure. Besides, a small number of investigators have focused on bifurcations and chaos [36-39] for low-Pr fluids.

In the present work at Pr=0.025, we have discovered cascadelike behaviors of the $\overline{Nu_{avg}}$ in the AR domain and cyclic characteristics of the peak of Nu in the time domain. For the former, we have managed to identify four regimes and the associated mechanism. For the latter, we have summarized these intriguing phenomena and share this summary with readers. At the same time, the proposed study serves as the sequel of Ref. [1], thus completing a comprehensive aspect-ratio-related study of buoyancy-driven recirculating flows for the entire range of *Pr*.

2. Numerical model

Consider buoyancy-driven recirculating flows for low-*Pr*-number fluids (with thermophysical properties listed in Table 1 for mercury) shown in Fig. 1(a), accompanied by a typical finite-element grid (Fig. 1(b)).

2.1. Governing equations as well as associated initial and boundary conditions

Continuity, Navier-Stokes momenta, and energy transport are governed by

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0, \tag{1}$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho u v}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \tag{2}$$

$$\frac{\partial\rho\,\nu}{\partial t} + \frac{\partial\rho\,\nu u}{\partial x} + \frac{\partial\rho\,\nu^2}{\partial y} = -\frac{\partial p}{\partial y} + \mu \Bigg(\frac{\partial^2\,\nu}{\partial x^2} + \frac{\partial^2\,\nu}{\partial y^2} \Bigg) - \rho g, \tag{3} \label{eq:3}$$

$$\frac{\partial \rho T}{\partial t} + \frac{\partial \rho u T}{\partial x} + \frac{\partial \rho v T}{\partial y} = \frac{k}{c_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right),\tag{4}$$

and the equation of state

Table 1 Thermophysical properties of mercury at 20 °C.

Properties	Mercury
c _p (J/kg K)	139.52
$\rho (kg/m^3)$	13580.75
$\mu \times 10^3 \text{ (kg/(m s))}$	1.55
k (W/m K)	8.698
$\beta \times 10^4 \ (1/\mathrm{K})$	1.803
$\alpha \times 10^7 \ (\text{m}^2/\text{s})$	45.905
Pr	0.025

Download English Version:

https://daneshyari.com/en/article/7054142

Download Persian Version:

https://daneshyari.com/article/7054142

<u>Daneshyari.com</u>