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a b s t r a c t

The present study deals with the finite element based numerical simulations of heat transfer and entropy
generation rates during natural convection for fluid saturated porous media in enclosures involving
curved walls (case 1: lower curvature and case 2: higher curvature) with various thermal boundary con-
ditions. The differential heating (isothermally hot left wall and cold right wall and adiabatic horizontal
walls) and Rayleigh-Bénard heating (isothermally hot bottom wall and cold top wall involving adiabatic
left and right walls) are considered. The locations and magnitudes of the entropy generation due to heat
transfer (Sh) and fluid friction (Sw) are presented and discussed based on the spatial distributions of iso-
therms and streamlines, respectively. The magnitudes of local entropy generation (Sh; Sw), total entropy
generation (Stotal) and average heat transfer rates (Nur and Nut) are significantly lesser for the Rayleigh-
Bénard heating compared to the differential heating for all the cases involving all Dam and Prm. The
Rayleigh-Bénard heating is the optimal strategy for all Dam and Prm involving both the concave cases
except for 10�3 6 Dam 6 10�2; Prm ¼ 10 and case 1 (concave) domain. The Rayleigh-Bénard heating is also
the optimal strategy compared to the differential heating involving the convex cases at
10�5 6 Dam 6 10�4 whereas the differential heating is the optimal heating strategy for Dam P 10�3

involving both Prm for the convex cases.
� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection in enclosed cavities (internal natural con-
vection) is one of the self sustained areas of research in the heat
transfer community based on various industrially and practically
important applications. Typical examples include thermal energy
storage systems [1–3], melting and solidification processes [4–7],
vapor absorption [8], electronic packaging [9], battery thermal
management [10], fuel cells [11] etc. In particular, a significant
effort has been devoted to study the convective transport within
enclosures involving various geometrical shapes [12–17].

Based on the earlier works, the flow structures and temperature
distributions are extremely sensitive to the shape of the walls and
geometrical orientation of the enclosure during natural convection.
During the conventional industrial and practical applications, the
geometrical shape of the walls of the cavity/enclosure plays the
pivotal role and the shapes are far from being simple. Thus, in addi-
tion to the study of natural convection involving simple geometries
[12–17], the study of natural convection within enclosures involv-
ing complicated geometries with wavy or curved walls has been an

important subject of research. A number of earlier works have
showed the importance of the complicated geometries on the
trends of heat and fluid flow characteristics during natural convec-
tion in porous media [18–27]. It was concluded from the earlier
works [18–27] that, the presence of the wavy or curved walls
results in the significant variation of the temperature distribution
and fluid flow characteristics. In addition to the geometrical shape
of the enclosure, the imposed thermal boundary conditions also
influence the temperature distributions and flow structures.

All processes are inherently irreversible. Thus, the associated
heat transfer and fluid flow processes during natural convection
are irreversible leading to the entropy generation. The entropy
generation leads to the destruction of the useful energy in the sys-
tem and that can be quantified via the second law of Thermody-
namics. Based on the second law of Thermodynamics, the
optimal criteria depend on the minimization of the entropy gener-
ation encountered in fluid flow and heat transfer processes. The
method of optimization based on the second law of Thermody-
namics is termed as the entropy generation minimization (EGM).
The detailed discussions on the fundamental concepts of EGM
were addressed by Bejan [28]. Comprehensive reviews on the stud-
ies of the entropy generation in convective processes within enclo-
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sures for various energy systems and applications are also pre-
sented in the literature [29,30].

The classical thermal boundary conditions as imposed by the
earlier researchers are the differential (finite temperature differ-
ence between the left and right walls involving adiabatic horizon-
tal walls) and Rayleigh-Bénard heating (finite temperature
difference between the top and bottom walls involving adiabatic
side walls) situations. A few earlier works are based on the entropy
generation during natural convection within enclosures with flat
or curved walls in the presence of the differential or Rayleigh-
Bénard heating involving fluid and porous media [31–40].

The current work aims to understand the flow and thermal
characteristics within cavities with curved walls which are useful
for various processing industries. The two heating strategies such
as differential and Rayleigh-Bénard are considered as case studies.
The straight opposite walls are considered as adiabatic whereas
other opposite pair (concave or convex) is maintained isothermally
hot and cold. Identical heat input within specific cavities with
curved isothermal walls (concave or convex) has been considered
and the efficacy of the heating strategy has been established via
two factors: reduction of the entropy generation and enhancement
of the heat transfer rate at the cold wall. An efficient process is
accompanied by the reduced entropy generation with the
enhanced heat transfer rate. Either the differential or Rayleigh-
Bénard heating can correspond to reduced entropy generation with
high heat transfer rates. The proposed study deals with the
detailed analysis of flow and thermal characteristics associated
with the spatial entropy generation distributions. Based on the
complexity of the enclosure walls, the trends of the temperature
distribution and flow characteristics may result in the interesting
patterns and the analysis of the entropy generation may be used
for the guideline on the selection of the heating strategy. The over-

all entropy generation vs heat transfer rate finally decides that
either differential or Rayleigh-Bénard heating strategy is efficient
for a cavity with concave or convex walls with low or high curva-
tures. In this context, the extensive comparative study of the differ-
ential and Rayleigh-Bénard heating strategies is carried out as a
first attempt in the current work for natural convection within cav-
ities with curved (concave/convex) walls.

The current work deals with natural convection within porous
cavities with curved (convex/concave) side (left and right) or hor-
izontal (top and bottom) walls. Two classical thermal boundary
conditions are employed: (a) differential heating involving the
hot left wall and cold right wall in the presence of the insulated
horizontal walls and (b) Rayleigh-Bénard heating involving the
hot bottom wall and cold top wall in the presence of the insulated
side walls. The study is carried out for the enclosures with the con-
cave (case 1: less concavity and case 2: high concavity) and convex
(case 1: less convexity and case 2: high convexity) side or horizon-
tal walls involving various fluids with different modified Prandtl
numbers (Prm ¼ 0:025: molten metal, and 10: saline water) for a
range of modified Darcy numbers (Dam ¼ 10�5 � 10�2) at a high
value of modified Rayleigh number (Ram ¼ 106). The non-linear
coupled partial differential equations governing the heat and fluid
flow fields are solved via the Galerkin finite element method with
the penalty parameter to obtain the velocity (U and V) and temper-
ature (h) components. The finite element basis sets are also used to
calculate the Nusselt numbers and entropy generation rates. The
numerical results are presented in terms of the spatial illustrations
of the isotherms (h), streamlines (w) and entropy generation due to
heat transfer and fluid friction (Sh and Sw) involving various test
cases. The total entropy generation rate (Stotal), average Bejan num-
ber (Beav ) and average Nusselt number (Nur and Nut) are illustrated
for various test cases at different Dam and Prm. The optimal heating

Nomenclature

Dam Darcy number
Gh gain in heat transfer rate
g acceleration due to gravity, m s�2

L length of the base or side walls, m
n normal vector in outward direction
Nu local Nusselt number
Nu average Nusselt number
p pressure, Pa
P dimensionless pressure
Prm Prandtl number
R residual of weak form
Ram Rayleigh number
S length of the curved wall
Se saving in the entropy generation rate
s0 dimensionless distance along the curved wall
T temperature, K
Th temperature of hot wall, K
Tc temperature of cold wall, K
u x component of velocity, m s�1

U x component of dimensionless velocity
v y component of velocity, m s�1

V y component of dimensionless velocity
x distance along x coordinate, m
X dimensionless distance along x coordinate
y distance along y coordinate, m
Y dimensionless distance along y coordinate

Greek symbols
a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

� porosity of the porous matrix
c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

U basis functions
P dimensionless heatfunction
u angle made by tangent of curved wall with positive x

axis
w dimensionless streamfunction
X two dimensional domain
n horizontal coordinate in a unit square
g vertical coordinate in a unit square

Subscripts
k node number
b bottom wall
l left wall
r right wall
t top wall
s surface/wall
m modified parameters

Superscripts
e element number
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