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a b s t r a c t

A new approach, radial integration polygonal boundary element method (RIPBEM), for solving heat con-
duction problems is presented in this paper. The proposed RIPBEM is a new concept in boundary element
method (BEM), which would be of great flexibility in mesh generation of complex 3D geometries. Due to
the characteristic of arbitrary shapes of polygonal elements, conventional shape functions are insuffi-
cient. Moreover, the resulted surface boundary integrals cannot be directly evaluated by the standard
Gauss quadrature. To solve these problems, general shape functions for polygonal elements with arbi-
trary number of nodes are given. To generally and numerically calculate the resulted surface integrals,
the radial integration method (RIM) is employed to convert the surface boundary integrals into equiva-
lent contour line integrals of the polygonal elements. As for 3D domain integrals, they are transformed to
equivalent line integrals using RIM twice. This methodology can explicitly eliminate strong singularities.
Several numerical examples are given to show the effectiveness and the accuracy of the proposed polyg-
onal boundary element method for solving heat conduction problems.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Heat conduction is a very popular phenomenon that occurs in a
solid or static fluid [1], if temperature difference exists [2], and
numerical methods [2–8] such as boundary element method [9–
14] are frequently used for solving this type of problems. As a
numerical and semi-analytical method, boundary element method
(BEM) has the advantage of only boundary discretization, and it
could reduce the dimensionality of the problem, which has been
being paid much attention for solving heat conduction etc. prob-
lems [15–18]. In addition, it is very suitable to be employed in
inverse problems [19–23], if only boundary physical quantities
could be measured. In conventional three-dimensional (3D) BEM,
rectangular or triangular boundary elements are used, which
restricts the BEM’s engineering application to some extent in solv-
ing problems with complicated geometries, due to lack of flexibil-
ity in mesh generation.

In the present work, a new concept, radial integration polygonal
boundary element method (RIPBEM), is proposed for solving heat
conduction problems, which could offer great flexibility in mesh
generation for complex 3D geometries [24,25]. Polygons are not

new concepts, which have been used in finite element method
(FEM) [26–28]. However, it has not been introduced or used in
BEM, to the best of the authors’ knowledge. It is worth emphasiz-
ing that this methodology is only for 3D problems, as the boundary
of a 2D geometry is a curve or a line, and there is no need to intro-
duce polygons.

Two main challenges are encountered in RIPBEM: One is that
the shape functions of polygonal elements should be general, and
the other is that the resulted surface boundary integrals over the
polygonal elements cannot be directly evaluated using standard
Gauss quadrature due to the arbitrary shapes of the polygonal ele-
ments. For the first challenge, the general shape functions for
polygonal elements with arbitrary numbers of nodes are given.
For the second challenge, the radial integration method (RIM)
[29] is employed to convert the surface boundary integrals into
equivalent line integrals along the contour of the polygonal ele-
ment. As for the 3D domain integrals coming from the heat gener-
ation and variation of the conductivity, they are transformed to
equivalent line integrals by using the radial integration method
twice. This treatment is an innovation technique and can explicitly
eliminate strong singularities appearing in both boundary and
domain integrals.

The heat conduction problems are taken as examples to validate
the proposed polygonal boundary element method, but the
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method can be straightly employed to solve other engineering
problems.

The rest of the paper is organized as follows. In Section 2, we
will briefly describe the steady heat conduction problem with heat
generation and spatially varying thermal conductivity. In Section 3,
the formulation and construction of general shape functions for
polygonal boundary elements with arbitrary nodes are introduced.
In Section 4, we will describe how the 3D domain integrals are con-
verted into equivalent line integrals in detail. In Section 5, the for-
mation of the system of equations is introduced. In Section 6,
several numerical examples are given to validate the effectiveness
and the accuracy of the proposed RIPBEM. Finally, concluding
remarks are given.

2. Steady heat conduction problem with heat generation and
spatially varying thermal conductivity

This paper is to present a new approach, polygonal boundary
element method, for solving heat conduction problems, and the
steady heat conduction problems with heat generation and spa-
tially varying thermal conductivity are taken as examples. The
steady heat conduction problem with heat generation can be
expressed as follows:

@

@xi
kðxÞ @TðxÞ

@xi

� �
þ QðxÞ ¼ 0 ðx 2 XÞ ð1Þ

The boundary conditions are:

TðxÞ ¼ TðxÞ; x 2 CT ð2Þ

qðxÞ ¼ �kðxÞ @TðxÞ
@n

¼ qðxÞ; x 2 Cq ð3Þ

In Eqs. (1)–(3), T is the temperature, �C, k is the thermal conduc-
tivity, W/(m �C), i changes from 1 to 3, x = (x1, x2, x3) = (x, y, z). qðxÞ
is the normal heat flux on the boundary Cq of the computational
domain X; n is the unit outward normal to Cq. In Eqs. (2) and
(3), �TðxÞ and �qðxÞ are the given temperature and heat flux on the
boundary. It should be emphasized that either temperature or heat
flux is specified on a boundary node.

3. Shape functions for general polygonal elements with
arbitrary number of nodes

To set up polygonal boundary element method for a 3D prob-
lem, shape functions for surface boundary polygonal elements with
arbitrary number of nodes are essential and of great importance.
Due to the complexity of the polygonal elements, there is no uni-
fied way to define the interpolation functions on polygonal ele-
ments [28]. In BEM, shape functions are based on intrinsic or
isoparametric coordinates. Therefore, the Wachspress shape func-
tions [25] are selected for convex polygonal boundary elements
expressed in isoparametric coordinates in the present work.

Fig. 1 shows a polygon X in isoparametric coordinates. The
number of the nodes of the polygon is Node. At any point
Q ¼ ðQ n;QgÞ inside X or on its boundary C, the Wachspress shape
function NiðQÞ; i ¼ 1; 2; � � � ;Node is defined as

NiðQÞ ¼ biðQÞPN
j¼1bjðQÞ ð4Þ

where the interpolant bi is as follows.

Nomenclature

A coefficients matrix
G Green function
h heat convective coefficient, W/(m2 �C)
I identity matrix
L boundary line or length, m
k thermal conductivity, W/(m �C)
N shape function
Ne number of elements
Node number of nodes
Na shape function
n unit outward normal
n’ unit outward normal
Q point or heat generation, W/m3

q heat flux, W/m2

R distance, m
r distance, m
S area, m2

T temperature, �C

x vector of coordinates or vector of unknowns
y source point
z point on boundary
z’ point on boundary

Greek symbols
a vector
b interpolant
C boundary
D change in variable
X domain

Subscripts
b boundary
bottom bottom
i internal or the ith
upper upper

Fig. 1. Arbitrary isoperimetric polygonal boundary element.
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