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a b s t r a c t

The heat and mass transfer in a rarefied gas between its two parallel condensed phases is considered on
the basis of linearized and non-linear S-model kinetic equations. The profiles of the macroscopic param-
eters in the gap between gas-liquid interfaces are obtained for several Knudsen numbers and for the cases
of complete and non-complete evaporation and condensation. The linearized Navier–Stokes equations
and energy equation, subjected to the temperature and pressure jump boundary conditions, are solved
analytically and the expressions for the macroscopic parameters are obtained. The comparison of three
approaches allowed us to establish the limit of the application of the linearized approaches in term of
the saturation temperature ratio between the condensed phases.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Evaporation and condensation phenomena are interesting not
only from the fundamental point of view, but they are also largely
present in various industrial applications. During the evaporation
and condensation the liquid-vapor interface is in non-equilibrium
state and its detailed modeling requires the use of the molecular
based approaches, like the kinetic theory of gases [1] or the molec-
ular dynamics [2]. The adequate description of the evaporation-
condensation was in focus of interest from a long time [3–8,1].
However, the complete understanding of these phenomena is just
far to be completely achieved. In addition, the implementation of
the kinetic models or the molecular dynamics based approaches
is not so easy for the practical problems. This is why it is also inter-
esting to use the continuum approaches, like the classical Navier–
Stokes equations, subjected to the temperature and pressure jumps
boundary conditions [9,10] to simulate the evaporation-
condensation problems. Recently the alternative macroscopic
approach based on the regularized 13 moments equations [11]
was also proposed and applied for the simulation of the evapora-
tion and condensation phenomena.

The main objective of this study is the development of the
numerical approach to simulate the behavior of the vapor phase
between two parallel liquid-vapor interfaces. Contrarily to the
authors of Ref. [8], where the BGK equation is implemented, the

linearized and non-linear S-model [12] kinetic equations are
solved numerically to simulate the evaporation-condensation phe-
nomena appearing between these two plane condensed phases.
The main advantage of the S-model is its capacity to provide the
correct Prandtl number, equals to 2=3, for the monatomic gases,
which can be important, when the problems involving the vapor
flows and the heat flux are considered. In addition, the linearized
Navier–Stokes equations and energy equation subjected to the
temperature and pressure jumps boundary conditions [9,10] are
also solved analytically and the simple relations are obtained for
the profiles of the macroscopic parameters of vapor in the gap
between two condensed phases. The influence of evaporation-
condensation coefficient on the macroscopic parameters is also
analyzed. Comparing the results obtained by three approaches
we establish the limit of the applicability of the linearized kinetic
equation as well as of the linearized Navier–Stokes equations for
the simulation of the evaporation and condensation phenomena.

2. Problem statement

We consider two parallel plane condensed phases at rest, main-
tained at temperature T1 and T2, on the bottom (y0 ¼ 0) and top
(y0 ¼ H) interfaces, respectively, y0 is the coordinate normal to both
condensed phases. Let p1 and p2 be the saturation gas pressures at
temperatures T1 and T2; ðT1 > T2Þ, respectively. We investigate
here the behavior of the monatomic gas motion caused by evapo-
ration and condensation on the condensed phases, first on the basis
of the kinetic theory.
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If we consider that the ratios p1=p2 and T1=T2 are independent,
then the evaporation-condensation problem is completely charac-
terized by three parameters: p1=p2 and T1=T2 ratios and by the rar-
efaction parameter d. However, in practice, the saturation pressure
and temperature are related by the Clausius–Clapeyron equation
[13] and therefore cannot take the arbitrary values. In this case
the evaporation-condensation problem depends on two parame-
ters only: the slop of p0ðT 0Þ function and the rarefaction parameter
d. In the following we consider both cases: first the situation when
two parameters are independent, and then, the cases of Argon and
several other monatomic gases, where the saturation pressure and
temperature are related through the Clausius–Clapeyron equation.

The distance H between two interfaces is taken as the charac-
teristic dimension of the problem, so the rarefaction parameter d
is defined as following:

d ¼ H
‘
; ð1Þ

where ‘ is the equivalent mean free path:

‘ ¼ l2v2

p2
; ð2Þ

which is defined using the reference parameters with subscript 2,
corresponding to the upper plate. The choice of the parameters
related to the upper plate as the reference parameters was done
without lost of generality. In Eq. (2) l2 ¼ lðT2Þ is the dynamic vis-
cosity of the vapor phase

lðT 0Þ ¼ l2

ffiffiffiffiffi
T 0

T2

s
; ð3Þ

v2 is the most probable molecular speed,

vðT 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2RT 0

p
; ð4Þ

calculated at the temperature T2 : v2 ¼ vðT2Þ;R ¼ kB=m is the
specific gas constant, kB is the Boltzmann constant, m is the molec-
ular mass.

3. Modeling based on the kinetic equation

To model the evaporation and condensation phenomena
between two parallel condensed phases maintained at different
temperatures first the S-model kinetic equation [12] is used. The
evaporation-condensation problem between two parallel con-
densed phases is considered here as steady state and one dimen-
sional in physical space, so the S-model kinetic equation is
written as

vy
@f
@y0

¼ t f S � f
� �

; ð5Þ

where f ðy0;vÞ is the one particle velocity distribution function,
v ¼ ðvx;vy;vzÞ is the molecular velocity vector, t is the collision fre-
quency, t ¼ p0=l. In the frame of S-model the equilibrium distribu-

tion function f S in Eq. (5) is defined as following

f Sðy0;vÞ ¼ f M 1þ 2mVq0

15n0ðy0ÞðkBT 0ðy0ÞÞ2
mV2

2kBT
0ðy0Þ �

5
2

 !" #
; ð6Þ

here T 0ðy0Þ is a gas temperature, n0ðy0Þ is a gas number density,
u0 ¼ ð0; u0;0Þ is a bulk velocity vector, V ¼ v � u0 is the peculiar

velocity vector, q0 ¼ ð0; q0;0Þ is a heat flux vector, f M is the Maxwel-
lian distribution function [14]. The macroscopic parameters are
defined as follows:

n0ðy0Þ¼
Z

f ðy0;vÞdv; u0ðy0Þ¼1
n

Z
f ðy0;vÞvydv; ð7Þ

T 0ðy0Þ¼ m
3kBn0

Z
f ðy0;vÞV2dv; q0ðy0Þ¼m

2

Z
f ðy0;vÞV2ðvy�u0

yÞdv: ð8Þ

By integrating Eq. (5) multiplied by ð1;vy;v2
i Þ we obtain the inte-

grals expressing the number of molecules, y component of momen-
tum and energy transported in y direction per a unit area of a plan,
parallel to the condensed phases. The evaporation flow rate,
expressed in the number of molecules per time and per surface unit,
J0n, and the evaporation mass flow rate, expressed in kilogram per
time and surface units, J0q, are defined as followings:

J0n ¼
Z
vyf ðy0;vÞdv; J0q ¼ m

Z
vyf ðy0;vÞdv: ð9Þ

The second definition of the evaporation mass flow rate is usually
provided from the experiments. The energy flux is defined as

J0E ¼
Z
vyv2f ðy0;vÞdv: ð10Þ

The constancy of the integrals J0n and J0E will be further used to esti-
mate the accuracy of the numerical calculations and for the com-
parison with the results of Ref. [8].

3.1. Linearized S-model equation

To linearize S-model kinetic Eq. (5) we assume that deviations
between the temperatures of two condensed surfaces and the cor-
responding saturation pressures are small:

XP ¼ p1 � p2

p2
� 1; XT ¼ T1 � T2

T2
� 1: ð11Þ

In previous expressions XP and XT can be related to the thermody-
namic forces [15]. As it was mentioned in Section 2, for a given gas
the pressure and temperature differences are coupled by the
relation

p1 � p2 ¼ bðT1 � T2Þ; ð12Þ
where b is a positive constant corresponding to the slop of the Clau-
sius–Clapeyron curve at T2, so XP and XT are not independent quan-
tities. However here we consider two forces separately, to see
clearly the impact of each force to the evaporation-condensation
process.

For further derivation we introduce the following dimension-
less quantities:

y ¼ y0

H
; c ¼ v

v2
; u ¼ u0

v2
; n ¼ n0

n2
; T ¼ T 0

T2
; p

¼ p0

p2
; q ¼ q0

p2v2
: ð13Þ

When XP and XT are small enough compared to 1 we can linearize
the distribution function as following:

f ¼ f M0 ð1þ hPXP þ hTXTÞ; ð14Þ
where hP and hT are the perturbation functions, related to the pres-

sure and temperature difference, respectively, f M2 is the absolute
Maxwellian distribution function with the reference number den-
sity, n2 and temperature, T2:

f M2 ¼ n2
m

2pkBT2

� �3=2

expð�c2Þ: ð15Þ

For the real gases, for any value of b we can obtain the solution as a
superposition of two functions as

h ¼ ðbhP þ hTÞDT; ð16Þ
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