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A new computational approach for the general numerical simulation of fluid flows is presented and
demonstrated for compressible natural convection flows with real fluid properties. The Characteristic-
Based Split finite element method is generalized, and abbreviated as GCBS, in the present work to intro-
duce both pressure-expansion effects in addition to thermal-expansion effects on density within the pro-
jection step, in contrast to recent works that preserve only one of those two expansion effects. Moreover,
we keep the fluid in thermodynamic equilibrium to support a real equation of state and fluid model. The
method retains the full Navier-Stokes equations, transitioning smoothly between compressible and
incompressible flows, without special artificial-compressibility methods, special low-Mach-number
methods, or other modeling treatments. Neither isothermal or isobaric assumptions are made. The
non-linear solution obtained is validated by the linearized solution during the early time period of the
simulation. Natural convection in a cavity is explored for its convenience in testing across known bench-
mark flow regimes, from classical Boussinesq flow to the full Navier-Stokes equations with real fluid
models. Results for natural convection in a cavity across Rayleigh numbers, non-dimensional adiabatic
temperature gradients, and temperature differences, are obtained across flow regimes with the GCBS
method. Classical Boussinesq, Thermodynamic Boussinesq, low-Mach number, and real-gas flows are
presented, demonstrating the generalization of the method across flow regimes. Thus, our contribution
is to generalize the Characteristic-Based Split method to capture the full Navier-Stokes equations while
demonstrating the capability with compressible natural convection.
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1. Introduction

In this paper we further develop the Characteristic-Based Split
(CBS) method [1,2] into a generalized CBS method, abbreviated
as GCBS, for solving the full compressible Navier-Stokes equations
by including thermal-expansion effects, which we demonstrate by
resolving natural convection without requiring Boussinesq approx-
imations. The CBS method, introduced in 1995, has successfully
demonstrated its generality by solving both compressible and
incompressible flows [1-3], shallow-water equations [4], and
incompressible flow problems with heat transfer through the
Boussinesq approximation [5,6]. A major difficulty arises in
directly solving non-Boussinesq flows in conservative form with
the original CBS method because its projection does not include
isobaric compressibility. Recent modifications to the SIMPLE
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algorithm [7] were made to include isobaric compressibility, but
not isothermal compressibility. Here the general equation of state
with thermal and bulk expansion (isothermal compressibility) is
used, bringing to the CBS method support for compressible natural
convection with a general equation of state and non-constant ther-
mal and transport properties. The resulting general semi-implicit
formulation for compressible non-Boussinesq flows is imple-
mented and validated against previous works when Boussinesq
[8,9], Thermodynamic Boussinesq [10]| and non-Boussinesq ideal-
gas assumptions are imposed before exploring real-gas flows
where no simplifications of the Navier-Stokes equations or
equations of state are made.

The objective of the present work is to generalize the CBS
method to extend it to the compressible non-Boussinesq flow
regime with real-fluid properties and with conservation laws in
conservative form, producing the first projection method capturing
the full compressible Navier-Stokes equations. We require that the
new formulation be validated with existing benchmark solutions
for Boussinesq flows [11,12,6,13-15], Thermodynamic Boussinesq
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flows [10], and compares well with low-Mach number non-
Boussinesq flows [16]. It is also required that we maintain all of
the terms of the Navier-Stokes equations, particularly in the energy
equation to include pressure work, viscous heating, and body-work
terms. We further require the method to be capable of using real-
fluid equations of state and properties through any general exter-
nal library, such as RefProp [17], as the static pressure, tempera-
ture, and velocity distributions are expected to be very sensitive
to them [18]. Mass is required to be conserved within the domain
without special treatment, such as the pressure/temperature scal-
ing used in low-Mach number methods [19]. Thus the advantage of
the proposed method is a unified approach for solving fully-
compressible to fully-incompressible thermal convection problems
with arbitrarily large temperature variations.

The CBS method has its origin in an operator-splitting (or pro-
jection) method, first introduced by Chorin [20], where velocity
and pressure are directly integrated for incompressible flows.
Kim and Moin [21,22] then improved Chorin’s split with a
fractional-step method accurate for transient incompressible
flows. The CBS method then extended operator splitting capabili-
ties further to compressible and incompressible flows, and is a
topic of continued active research [23,24]. Here we generalize
the CBS method by including the thermal expansion term in the
equation of state. The split equations are then cast into weak form,
which is then discretized by a finite element method. Real-fluid
properties from RefProp are introduced efficiently into the code
through a new unstructured self-tuning two dimensional interpo-
lation library. Convergence is accelerated with an adaptive mesh
refinement scheme. To improve numerical behavior, the pressure
field and the energy field are each additively decomposed into a
static component and a dynamic component. The conservation-
of-energy equation is given an implicit treatment to maintain the
CBS Courant-Friendrichs-Lewy (CFL) limit. Artificial compressibil-
ity was not required or used for the strictly incompressible-flow
limit, as customarily employed when approaching the
incompressibility limit [25,26]. The formulation is independent
of the element type; however, Lagrange elements used for all
scalar fields are of higher order than the Lagrange elements used
for all vector fields.

2. Problem statement

Natural convection with the Usual-Boussinesq (UB),
Thermodynamic-Boussinesq (TB), ideal-gas, and real-fluid models,
with a general equation of state, are considered over the time
interval [0, t.,q, in a domain Q € RY, within the boundary T'. The
domain, shown in Fig. 1, has a characteristic length, L*, equal to
the edge length, where the asterisk superscript * is used to indicate
dimensional values. The characteristic velocity is chosen to be
V" = oy, /L", where o, is the thermal diffusivity of the fluid at
the reference state. The reference condition for thermodynamic
and transport properties are fixed at a reference pressure, Py,
and a reference temperature, Try. The initial conditions for the cav-
ity are that of the fluid at rest at the reference temperature and
pressure. The fluid motion is governed by the Navier-Stokes equa-
tions, of which the continuity, momentum, and energy conserva-
tion equations are written in the following non-dimensional form:
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Fig. 1. Natural convection in a cavity heated on the left wall, cooled on the right
wall, with the remaining walls adiabatic.

Energy conservation
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where p is the mass density, u; the ith component of the velocity
vector field (with i=1,2, or 3 depending on the dimension of the
problem), U; = pu; the ith component of the momentum vector
field, p the pressure, f; the ith component of the body acceleration
vector field, E the total energy, T the temperature, k the thermal
conductivity, and u the dynamic viscosity. All of these quantities
are non-dimensional. A non-dimensionalization of the equations
introduces the Reynolds (Re), Richardson (Ri), Prandtl (Pr), and
Eckert (Ec) numbers,
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where dimensional values are denoted with the “asterisk” super-
script *. Here, p;, is a reference density, fi;,. a reference dynamic-
viscosity, g, a reference body-acceleration, c; . a reference
specific-heat, k., a reference thermal-conductivity, and AT, a refer-
ence temperature-difference set equal to the applied temperature-

difference of T, — T.. The non-dimensional deviatoric stress tensor
is given by
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The additional non-dimensional number, the Rayleigh number, is
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where in the case of an ideal gas, f5;,AT,,; becomes AT,,/T,.

A relevant Mach number is found by scaling against the buoy-
ant velocity scale, V2= BresAT,cg'L", which keeps the velocity
field near unity, independent of the Rayleigh number, the Mach
number, and the Eckert number, and is found valuable in the con-
sideration of compressible natural convection. The buoyant Mach

number M is defined for a general fluid, and IW,G the Mach number
for an ideal gas,
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