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a b s t r a c t

This study focuses on the model reduction of a two-phase loop thermosyphon. The aim is to propose a
nonlinear reduced order model able to mimic the thermo-hydraulic behavior of the loop in order to
use it for real-time state feedback control, in future applications. First, the one-dimensional two-phase
flow model describing the liquid-gas mixture in both mechanical and thermal equilibrium is recalled.
The numerical resolution of this detailed model is carried out using a finite volume approach and a
Harten-Lax-van Leer Contact Riemann solver. Then, from this detailed model, a new structure of reduced
model is determined via the Galerkin projection method. These reduced models, built by the Modal
Identification Method, show a very good agreement between the outputs of the detailed model and those
computed by the reduced model, during the identification stage. Two test cases, corresponding to differ-
ent thermal loads at the evaporator, show that the overall levels of density, velocity, mass flow rate, pres-
sure, temperature and internal energy in the loop are satisfactorily reproduced by the reduced model
with a global relative error less than 5%. The interest of using such a model lies in the significant gain
in CPU time.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Heat dissipation due to power electronics increases continu-
ously for years, reaching now 300 W�cm�2 and beyond, due to
electronic components miniaturization. Highly efficient cooling
systems are then required. As the classical cooling systems are
not powerful enough, an interesting solution consists in using
two-phase heat transfer devices, since the cooling capabilities are
much larger with latent heat than with sensible heat. Among them,
a two-phase loop thermosyphon (2PLT), for which the fluid circu-
lation is generated by buoyancy forces, is a passive cooling system
without pump. The working fluid boils at the evaporator due to
heat input. The vapor then moves to the condenser where heat is
extracted from the system and the vapor changes to liquid. These
two-phase closed thermosyphons have been studied in many
applications such as, solar water heaters [1–4], telecommunication
equipments [5], avionics systems [6], nuclear power plants [7–9],
electronics industry [10].

Many studies have been carried out on the modeling of such a
system in steady and transient states. For instance, Vincent and
Kok use 1D control volume approach for the transient behavior

of a two-phase co-current thermosyphon [11]. Different models
are used for evaporator, condenser, liquid line and vapor line. This
means that for computation, each part of loop has its own model.
They are based either on hydraulic flow model or compressible
flow model. More recently, Bieliński and Mikielewicz present a
generalized 1D two-phase separate flow model of the ther-
mosyphon loop [12]. They use incompressible flow model with
Boussinesq approximation and empirical correlation in different
parts of the loop. This model considers thermal equilibrium at
any point of loop. Qu uses two different models for evaporator
and condenser [13]. An integral balance of bubble flow model is
used at the evaporator and the liquid film condensation of
vapor-liquid concurrent flow model at condenser.

In this paper, a 1D model (Euler equations) is used to describe
the transient operation of a simplified loop thermosyphon (con-
stant cross-section, adiabatic liquid and vapor lines, single evapo-
rator) [14]. In each part of the loop, the same model is used in
the computation. In other words, the model describes thermody-
namic equilibrium (saturation or mixture), but also thermody-
namic non-equilibrium (pure liquid or pure vapor) phase and so
can compute phase transitions (liquid-mixture-vapor). This simpli-
fied model retains the main features of a real 2PLT: gravity-driven
two-phase compressible flow, unsteady behavior, thermodynamic
equilibrium and non equilibrium. Despite its simplifying
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assumptions, this model requires large CPU time consumption,
even in 1D, especially because of the Courant-Friedrichs-Lewy
(CFL) condition. It is hence not usable for real-time applications.
In the present paper, this model is used as starting point to build
a Reduced Order Model (ROM) of this 2PLT. A ROM is a model
involving a small number of degrees of freedom, which reproduces
the behavior of an actual system or a reference Detailed Model
(DM) with a large number of degrees of freedom, whatever the
time-varying boundary conditions and/or source terms.

The goal of this work is to develop a nonlinear ROM able to
mimic the thermo-hydraulic behavior of the loop in order to use
it for real-time state feedback control, in future applications. To
the author’s knowledge, this work constitutes the first attempt to
develop a ROM of a 2PLT.

Among model reduction methods for nonlinear problems, let us
first cite the Proper Orthogonal Decomposition (POD), also known
as Karhunen–Loève decomposition, coupled to a Galerkin projec-
tion. As a result of performing POD on discrete space-time data, a
set of space functions and time-varying coefficients are obtained,
that allow compact approximation of original data. After trunca-
tion or selection of modes, a reduced set of space functions is
retained for a Galerkin projection of Partial Differential Equations
(PDE) onto these space functions, which yields a so-called
POD-Galerkin ROM. Although this approach has been widely
used in the last decades, especially in fluid mechanics, either
for buoyancy-driven flows [15,16], two-phase flows [17] and
compressible flows [18], it is known to often lead to unstable
ROMs, even in the case of linear PDE, thus requiring a posteriori
stabilization [19].

Another approach is the Reduced Basis (RB) method [20] which
aims at building ROMs able to compute solutions of parametrized
PDE for given value(s) of parameter(s). It is a two-step approach. In
the offline step a reduced basis is built, formed by solutions of a
reference Finite Element model at optimally selected points in
the parameter space via a Greedy algorithm. The online step con-
sists in solving the ROM which is obtained by a Galerkin projection
of PDE onto the reduced basis. Although the RB method can be
applied to transient flow problems, directly or by coupling it to
POD as done for instance in [21] for natural convection in cavity,
it appears to be adapted to the construction of parametric ROMs
for parameters which are not time-dependent rather than for
time-varying external or internal loads. It should be mentioned
that the RB method provides errors bounds but in return requires
a reference Finite Element model on which it relies [20].

The goal oriented model-constrained approach developed by
Bui-Thanh et al. addresses some POD-related issues by computing
the basis of space functions via an optimization problem: minimiz-
ing the output error between reference model and ROM solutions,
subject to satisfying the ROM equations. It is assumed that each
basis vector can be represented as a linear combination of snap-
shots. The approach has been applied in [22] to a compressible
flow around a rotor blade, showing that for a small number of
approximation functions (�10), stable ROMs have been obtained
whereas POD-Galerkin ROMs were unstable.

The Proper Generalized Decomposition (PGD) does not rely on a
reference model and does not make use of simulated or measured
data. PGD uses approximations for the variables under separate
form, which are sums of products of functions of space coordinates,

Nomenclature

a state vector function
A duct cross-section, m2

B coefficient involved in closure laws, Pa
Cp specific heat, J�kg�1�K�1
d internal diameter, m
e specific internal energy, J�kg�1
g acceleration of gravity, m.s�2

h specific enthalpy, J�kg�1
hcond condenser heat exchange coefficient, W�m�2�K�1
H output matrix
J ðmÞid quadratic functional to be minimized for order m model

identification
L length of the loop, m
m ROM order i.e. size of vector a
_m evaporation/condensation rate per volume unit,

kg�m�3�s�1
Nx number of cells for space discretization
Nt number of time steps
p pressure, Pa
P heat power density source term, W�m�3
q specific reference energy, J�kg�1
_Qevap thermal load at evaporator, W
Sext exchange surface at condenser, m2

t time, s
T temperature, K
Tcold cold external temperature at condenser, K
u velocity, m�s�1
v specific volume, m3�kg�1
v generic notation for variables
x position along the loop, m
y vapor mass fraction

Greek symbols
c specific heat capacity ratio
dv deviation of variable v with respect to initial steady

state
dt time step, s
eglob global relative quadratic error between DM and ROM
ev relative quadratic error between DM and ROM for

variable v
/ðvÞk kth space function associated with variable v
l dynamic viscosity, kg�m�1�s�1
q density, kg�m�3
X volume, m3

Subscripts
0 initial steady state
eq thermodynamic equilibrium
g gas
id identification
l liquid
neq not in thermodynamic equilibrium

Superscripts
T transposition sign
ðvÞ related to variable v

Abbreviations
2PLT two-phase loop thermosyphon
DM Detailed Model
MIM Modal Identification Method
ROM Reduced Order Model
SG Stiffened Gas
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