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a b s t r a c t

The turbulent velocity field in a rotating rib-roughened channel is studied by means of incompressible
Large Eddy Simulations (LES). The computations are validated against Particle Image Velocimetry (PIV)
measurements performed in the symmetry plane of an experimental model of the same geometry. The
present simulations consider the effect of the Coriolis force on a periodic section of low aspect ratio
(AR = 0.9) and one rib-roughened wall. The Reynolds number based on the bulk velocity and the hydrau-
lic diameter is fixed to 15,000, whereas the rotation number is set to 0, 0.31 and 0.77. Beyond the analysis
of the Coriolis force influence on the shear layer stability, the present simulations allow to characterize
the stream-wise secondary flows that redistribute the momentum through the cross-section at the dif-
ferent rotation numbers, the temperature distribution, and the resulting heat transfer on the wall. The
flow structure is similar at rotation numbers equal to 0.31 and 0.77 when the channel rotates in the
clockwise direction, with reduced turbulence and heat transfer on the ribbed wall, which acts as leading
side. Only minor differences in the secondary flows and mean velocity profiles are observed due to the
different magnitude of the Coriolis force. On the other hand, it has been observed that the secondary flow
structure differs significantly when the rotation number is increased from 0.30 to 0.77 under counter-
clockwise rotation. In particular, Taylor-Görtler vortices are observed together with the Coriolis-
induced secondary flows at the maximum rotation rate, leading to a redistribution of the mean and tur-
bulent velocity fields, as well as a significant change in the heat transfer distribution.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the fluid dynamics in a rotating system requires to
consider the effect of the Coriolis force on the average and fluctu-
ating components of the fluid velocity field. Several examples are
found in geophysical flows or engineering applications, like in jet
engine compressors and turbines.

In the present work, our efforts focus on the flow and heat
transfer of an incompressible fluid in a ribbed channel of low
aspect ratio, shown in Fig. 1. The configuration investigated,
although simplified, emulates the main flow phenomena in the
rotating cooling channels present in the turbine blades of jet
engines. With such cooling channels, high turbine inlet tempera-
tures can be reached, leading to an increase of efficiency of the
engine. The channel geometry is similar to the one investigated
experimentally by Coletti et al. [5] and Mayo et al. [22,23]. One

wall is roughened by means of square turbulators placed perpen-
dicularly to the main flow direction (x direction). The channel
rotates with an angular speed X around the z axis, perpendicular
to the main flow direction and parallel to the axis of the turbula-
tors. The angular speed X is considered positive if the channel
rotates in the positive sense of the z axis (counter-clockwise rota-
tion), as it is depicted in Fig. 1, and negative in the opposite case
(clockwise rotation). The area near the wall leading the motion
of the channel is often referred as leading side (top wall in the case
of Fig. 1), whereas the opposite one is called trailing side (the
ribbed wall in the case of the figure). When the density gradients
are limited, the centripetal buoyancy force is negligible, the cen-
tripetal force acts as a pressure gradient and the rotational effects
are only promoted by the Coriolis force. Even in those circum-
stances, the fluid dynamics differs greatly from the one obtained
in stationary conditions. The velocity and heat transfer fields are
determined by the Reynolds and Prandtl numbers, as well as by
the ratio of the Coriolis force to the inertia of the fluid. The Rey-
nolds (Re) and Prandtl (Pr) numbers are defined as

Re ¼ UbDH=m ð1Þ
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Pr ¼ lcp=k ð2Þ
where Ub is the bulk velocity, DH the hydraulic diameter, m the kine-
matic viscosity, l the dynamic viscosity, cp the specific heat at con-
stant pressure and k the thermal conductivity. On the other hand,
the ratio of the Coriolis force to the inertia of the flow is represented
by the rotation number, Ro:

Ro ¼ XDH=Ub ð3Þ
The presence of the Coriolis force affects the velocity field first

by promoting the redistribution of the mean velocity shear,
@U=@y; U standing for the mean stream-wise velocity component.

As shown by Johnston et al. [16] and Kristoffersen and Andersson
[18], the flow in a high aspect ratio channel tends to present a core
region where @U=@y is equal to 2X. Second, the stability of any
shear layer is affected by the magnitude of the rotational speed
and the relative orientation of the mean flow vorticity with respect
to the angular velocity vector. Lezius and Johnston [20] carried out
the stability analysis of a rotating two-dimensional and inviscid
flow, introducing the gradient Richardson number as the critical
parameter that determines the stability of the shear layer,

Ri ¼ �2X
@U
@y � 2X

@U
@y

� �2 ð4Þ

Local stability occurs as long as the Richardson number is pos-
itive. This is the case when the angular velocity vector and the local
mean vorticity (represented by @U=@y) present the same orienta-
tion, also known as cyclonic rotation. When the angular velocity
vector and the local vorticity present opposite directions, the flow
can be stable or unstable depending on their relative magnitude. If
the local vorticity is large compared to the angular velocity of the
channel, i.e., j@U=@yj > 2jXj, the Richardson number is positive (Eq.
(4)), and therefore, the shear layer is stabilized. However, when the
angular velocity is large enough so that j@U=@yj < 2jXj, the
Richardson number is positive and the shear flow tends to be
stable. Finally, neutral stability is found when Ri = 0.

Nomenclature

A cross-section area
CW clockwise
CCW counter-clockwise
cp specific heat at constant pressure
DH hydraulic diameter
EF Enhancement Factor
f friction factor
H rib height
h heat transfer coefficient
k thermal conductivity
MT turbulence resolution magnitude
Nu Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
p instantaneous pressure
q dimensionless turbulent kinetic energy
qconv convective heat transfer per unit area
Re Reynolds number
Ri Richardson number
Ro rotation number
r distance to the axis of rotation
T temperature
t time
U; V ; W mean stream-wise, vertical and span-wise velocity com-

ponents
Ub bulk velocity
u;v;w instantaneous value of the stream-wise, vertical and

span-wise velocity components
urms; v rms; wrms root mean square values of the stream-wise,

vertical and span-wise velocity components
kVk in-plane velocity modulus
x; y; z non-dimensional Cartesian coordinates

Greek symbols
at subfilter-scale eddy diffusivity

b instantaneous driving pressure gradient
D cell characteristic length
D cell characteristic length
Dx;DyDz cell dimensions in the x; y and z directions
dij Kronecker Delta
e dissipation rate
eijk Levy-Civita symbol
g Kolmogorov length scale
H dimensionless temperature
l dynamic viscosity
m kinematic viscosity
mt subfilter-scale viscosity
qt fluid density
r standard deviation
X angular velocity

Acronyms
AR Aspect Ratio
CFD Computational Fluid Dynamics
LDKSGS Localized dynamic k-equation subgrid-scale
LES Large Eddy Simulation
PIV Particle Image Velocimetry
SFS Sub-Filter-Scale

Subscripts and superscripts
� spatially-filtered value
� time-averaged value
B referring to the bottom wall
b bulk
c center
eff effective
T referring to the top wall
0 reference value

Fig. 1. Flow configuration (counter-clockwise rotation).
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