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a b s t r a c t

This paper describes a newmethod of solving of inverse coefficient thermal conductivity problems in ani-
sotropic bodies directed on the identification of temperature dependences of thermal conductivity tensor
components. This method includes the following: quadratic residue construction between testing and
theoretical temperature values, minimized gradient descent implicit method, parametric identification
method, construction and numerical solution of conjugate problems relating to anisotropic thermal con-
duction, regularizing functional development based on prior assumptions on smoothness of temperature
functions of thermal conduction components of anisotropic bodies, permitting to increase the whole
method stability. Basing on this method many results were found relating to the identification of thermal
conduction tensor components depending on temperature in the form of practically arbitrary functions:
monotonous functions, having minimum and maximum points, flex points, etc.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the process of solving of direct problem of the thermal con-
duction theory the temperature fields (consequences) are deter-
mined by causal links – difference equations, initial-boundary
conditions, different coefficients. In the process of solving of iden-
tification problem (inverse problems) conversely – these causal
links (boundary conditions, coefficients, differential equations,
etc.) are determined according to the consequence (mostly on tem-
perature fields). Besides, there are hundreds and thousands of pub-
lications relating to thermal conduction direct problem solution in
isotropic areas, particularly, monographs and books Kartashov [1],
Zarubin [2], Zarubin and Kuvyrkin [3], Lykov [4], Carslaw and Jae-
ger [5], and also in anisotropic mediums Formalev [6], in articles
Zarubin, Kuvyrkin and Savelyeva [7], Kartashov [8], Formalev and
Kolesnik [9–11]. On inverse problems of thermal conductivity the-
ories in isotropic mediums we may note the following mono-
graphs: Samarskiy and Vabischevich [12], Alifanov et al. [13],
Tikhonov and Arsenin [14], Beck et al. [15]. On inverse problems
of thermal conductivity in anisotropic mediums we may note the
following articles [16–18].

The authors do not know any publications relating to the iden-
tification of temperature dependences of tensor components of
anisotropic thermal-conductivity (nonlinear mediums). This is
due to the fact that standard problems in general and inverse coef-
ficient problems in particular are incorrect, because significant
result errors can correspond to small experimental data (input
data) deviations, as a result, these results become inadequate.
The development of methods strengthening the numerical solving
algorithm stability is one of the fundamental tasks in identification
problems.

Within this paper the stable method of the identification of
temperature dependences of anisotropic thermal-conductivity ten-
sors was first developed and tested on the basis of the implicit
method of gradient descent of the quadratic residual functional
minimization, regularizing functional construction and its inclu-
sion into the main quadratic residual functional and efficient abso-
lutely stable method of the numerical solving of direct and
conjugate problems on sensitivity matrix identification. Discov-
ered results confirm that this method is rather efficient.

2. Problem statement and solving method

The first initial-boundary value problem of anisotropic thermal
conductivity is considered within this paper against temperature
distribution Tðx; y; tÞ in rectangular field l1 � l2, t > 0: All thermal
conductivity tensor components k11ðTÞ; k12ðTÞ; k22ðTÞ depend on
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temperature, constant temperature is set at the boundaries Tmax,
besides, initial temperature is Tmin < Tðx; y; tÞ 6 Tmax. The compo-
nent domain coincides with the interval T 2 ½Tmin; Tmax�.
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; x 2 ð0; l1Þ; y 2 ð0; l2Þ; t > 0; ð1Þ

Tðx;0; tÞ ¼ Tð0; y; tÞ ¼ Tmax; Tðx; l2; tÞ ¼ Tðl1; y; tÞ ¼ Tmax ð2Þ

Tðx; y;0Þ ¼ Tmin; ð3Þ
The inverse problem can be formulated as follows: on experi-

mental temperature distribution in space-time points

Tððx; yÞi; tkÞ ¼ eT i;k; i ¼ 1; I; k ¼ 1;K ð4Þ
using symbolic models (1)–(3) define functions k11ðTÞ; k12ðTÞ; k22ðTÞ
in the interval T 2 ½Tmin; Tmax�.

The required functions k11ðTÞ; k12ðTÞ; k22ðTÞ; will be searched as
a linear combination of the following linear continuous basis
functions NmðTÞ [16], defined on segments DTm; m ¼ 1;M
ðTmin 6 T 6 TmaxÞ; assigned to each node Tm;m ¼ 0;M, besides, its
node values T ¼ Tm; m ¼ 0;M are equal to one and other values
are equal to zero:

NmðTÞ ¼
0; T < Tm�1;

T�Tm�1
Tm�Tm�1

; Tm�1 6 T 6 Tm;

Tmþ1�T
Tmþ1�Tm

; Tm 6 T 6 Tmþ1; 0; T > Tmax;

8>>><>>>: m ¼ 1;M � 1;

N0ðTÞ ¼
T1�T
T1�T0

; T0 6 T 6 T1;

0; T > T1; T < T0;

(
m ¼ 0;

NMðTÞ ¼
T�TM�1
TM�TM�1

; TM�1 6 T 6 TM;

0; T < TM�1; T > TM;

(
m ¼ M:

ð5Þ
The functions ki;jðTÞ i; j ¼ 1;2 are approximately defined as lin-

ear combinations of functions (5), where the following values kmi;j;

i; j ¼ 1;2; m ¼ 0;�I of searching node functions Tm; due to definition
are used as coefficients.

So, the coefficients ki;jðTÞ; i; j ¼ 1;2 are approximately defined as
the following linear combinations of basic functions (5) where the
coefficients kmi;j; i; j ¼ 1;2; m ¼ 0;M are searching node values of
functions ki;jðTÞ :

k11ðTÞ �
XM
m¼1

km11 � NmðTÞ; ð6Þ

k12ðTÞ �
XM
m¼1

km12 � NmðTÞ; ð7Þ

k22ðTÞ �
XM
m¼1

km22 � NmðTÞ: ð8Þ

Let’s introduce desired quantity designation k111 ¼ k11ðTminÞ;
k112 ¼ k12ðTminÞ; k122 ¼ k22ðTminÞ; . . .; kM11 ¼ k11ðTmaxÞ; kM12 ¼
k12ðTmaxÞ; kM22 ¼ k22ðTmaxÞ. To determine vector components

k ¼ ðk111; . . . ; kM11; k112; . . . ; kM12; k122; . . . ; kM22Þ
T
in Eqs. (6)–(8) we’ll input

the following quadratic functional:

SðkÞ ¼ 1
2

XI

i¼1

XK
k¼1

½Ti;kðkÞ � eT i;k�
2 ð9Þ

as sums on space-time variables of squared deviations of observed

values eT i;k, where input unknown (searching) parameters in the
points ððx; yÞi; tkÞ, from target values Ti;kðkÞ � Ti;kððx; yÞi; tk; kÞ, calcu-
lating on arbitrary vector values k.

It’s assumed that in case of functional (9) stationary value
attainment, the searching characteristics, input in the experimen-

tal values eT i;k, will be approximately coincided with the character-
istics, following which the temperature target values have been
found.

In order to minimize this functional the implicit method of gra-
dient descent is used

kðnþ1Þ ¼ kðnÞ � angradSðkðnþ1ÞÞ: ð10Þ

where n – previous iteration number, an – small parametric steps
following the condition ðan > 0Þ

Sðkðnþ1ÞÞ < SðkðnÞÞ: ð11Þ

The iteration process (10) is finished when the functional
achieves the following stationary values gradSðkðnþ1ÞÞ � 0; i.e.
when performing

gradSðkðnþ1ÞÞ�� �� 6 e; ð12Þ

where e – required accuracy of the iteration process.
To calculate the functional gradient the function Ti;kðkðnþ1ÞÞ,

included in (9), within kðnÞ should be taken a Taylor series expan-
sion by retention of linear components against DkðnÞ [16]. We come
to the following equation:

Sðkðnþ1ÞÞ � 1
2

XI

i¼1

XK
k¼1

Ti;kðkðnÞÞ þ
X3Mþ2

l¼0
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@kl
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ð13Þ
In this case the functional (13) gradient components are calcu-

lated by the following equations:
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; l ¼ 0;3M þ 2; ð14Þ

where 3 � ðM þ 1Þ – number of desired parameters.
The functional gradient vector with components (14) can be

represented in the following vector-matrix form:

gradSðkðnþ1ÞÞ ¼ ZTðkðnÞÞðTðkðnÞÞ � eT Þ þ ZTðkðnÞÞZðkðnÞÞDkðnÞ; ð15Þ

where the upper index «T» means conjugation and Z matrix has the
following view:

ZðkðnÞÞ ¼

u0ððx; yÞ1; t1; kðnÞÞ . . . v0ððx; yÞ1; t1; kðnÞÞ . . . w0ððx; yÞ1; t1; kðnÞÞ . . .
u1ððx; yÞ2; t1;kðnÞÞ . . . v1ððx; yÞ2; t1;kðnÞÞ . . . w1ððx; yÞ2; t1;kðnÞÞ . . .

� � � � � � � � �
uI�K ððx; yÞI ; tK ; kðnÞÞ . . . v I�K ððx; yÞI ; tK ; kðnÞÞ . . . wI�K ððx; yÞI ; tK ; kðnÞÞ . . .
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