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This paper describes a new method of solving of inverse coefficient thermal conductivity problems in ani-
sotropic bodies directed on the identification of temperature dependences of thermal conductivity tensor
components. This method includes the following: quadratic residue construction between testing and
theoretical temperature values, minimized gradient descent implicit method, parametric identification

method, construction and numerical solution of conjugate problems relating to anisotropic thermal con-
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duction, regularizing functional development based on prior assumptions on smoothness of temperature
functions of thermal conduction components of anisotropic bodies, permitting to increase the whole
method stability. Basing on this method many results were found relating to the identification of thermal
conduction tensor components depending on temperature in the form of practically arbitrary functions:
monotonous functions, having minimum and maximum points, flex points, etc.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the process of solving of direct problem of the thermal con-
duction theory the temperature fields (consequences) are deter-
mined by causal links - difference equations, initial-boundary
conditions, different coefficients. In the process of solving of iden-
tification problem (inverse problems) conversely - these causal
links (boundary conditions, coefficients, differential equations,
etc.) are determined according to the consequence (mostly on tem-
perature fields). Besides, there are hundreds and thousands of pub-
lications relating to thermal conduction direct problem solution in
isotropic areas, particularly, monographs and books Kartashov [1],
Zarubin [2], Zarubin and Kuvyrkin [3], Lykov [4], Carslaw and Jae-
ger [5], and also in anisotropic mediums Formalev [6], in articles
Zarubin, Kuvyrkin and Savelyeva [7], Kartashov [8], Formalev and
Kolesnik [9-11]. On inverse problems of thermal conductivity the-
ories in isotropic mediums we may note the following mono-
graphs: Samarskiy and Vabischevich [12], Alifanov et al. [13],
Tikhonov and Arsenin [14], Beck et al. [15]. On inverse problems
of thermal conductivity in anisotropic mediums we may note the
following articles [16-18].
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The authors do not know any publications relating to the iden-
tification of temperature dependences of tensor components of
anisotropic thermal-conductivity (nonlinear mediums). This is
due to the fact that standard problems in general and inverse coef-
ficient problems in particular are incorrect, because significant
result errors can correspond to small experimental data (input
data) deviations, as a result, these results become inadequate.
The development of methods strengthening the numerical solving
algorithm stability is one of the fundamental tasks in identification
problems.

Within this paper the stable method of the identification of
temperature dependences of anisotropic thermal-conductivity ten-
sors was first developed and tested on the basis of the implicit
method of gradient descent of the quadratic residual functional
minimization, regularizing functional construction and its inclu-
sion into the main quadratic residual functional and efficient abso-
lutely stable method of the numerical solving of direct and
conjugate problems on sensitivity matrix identification. Discov-
ered results confirm that this method is rather efficient.

2. Problem statement and solving method

The first initial-boundary value problem of anisotropic thermal
conductivity is considered within this paper against temperature
distribution T(x,y,t) in rectangular field [; x L, t > 0. All thermal
conductivity tensor components q1(T), 412(T), 222(T) depend on
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temperature, constant temperature is set at the boundaries Tpax,
besides, initial temperature is Ty < T(X,¥,t) < Tmax. The compo-
nent domain coincides with the interval T € [Twmin; Tmax]-
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The inverse problem can be formulated as follows: on experi-
mental temperature distribution in space-time points

T((x,¥);t*) = Tipsi = T,Lk=T.K (4)
using symbolic models (1)-(3) define functions 111(T), 212(T), 222(T)
in the interval T € [Tmin; Tmax]-

The required functions 211(T), 412(T), 222(T), will be searched as
a linear combination of the following linear continuous basis
functions N, (T) [16], defined on segments AT,, m=1M
(Tmin < T < Tmax), assigned to each node T,,, m = 0, M, besides, its

node values T =T,,, m =0,M are equal to one and other values
are equal to zero:
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The functions 4;;(T) i,j = 1,2 are approximately defined as lin-
ear combinations of functions (5), where the following values 4,

i,j=1,2, m=0,] of searching node functions T, due to definition
are used as coefficients.

So, the coefficients 4;(T), i,j = 1,2 are approximately defined as
the following linear combinations of basic functions (5) where the
coefficients A,J, i,j=1,2, m=0,M are searching node values of
functions 4;;(T) :
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J2(T) = Y 7%y - Nu(T), (7)
m=1
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Joa(T) &> 755 - Nin(T). (8)
m=1

Let’s introduce desired quantity designation i}] = 211(Tmin);

My =202(Twin)i 2y = 222(Tmin)i - A =201 (Tmax); 20 =

712(Tmax); A’Z"'Z:AZZ(TWX). To determine vector components
o= (M M gL M in Egs. (6)-(8) we'll input

the following quadratic functional:
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as sums on space-time variables of squared deviations of observed
values T;j, where input unknown (searching) parameters in the
points ((x,y);, t*), from target values T, (%) = Tir((,);, t, %), calcu-
lating on arbitrary vector values 4.

It’s assumed that in case of functional (9) stationary value
attainment, the searching characteristics, input in the experimen-
tal values T,-_,k, will be approximately coincided with the character-
istics, following which the temperature target values have been
found.

In order to minimize this functional the implicit method of gra-
dient descent is used

A =™ _ o grad S, (10)

where n - previous iteration number, o, - small parametric steps
following the condition (o, > 0)

SAMY) < S(M). (11)

The iteration process (10) is finished when the functional

achieves the following stationary values gradS(A™*V)=~0, i.e.
when performing

lgradS(.™ V)| < e, (12)

where ¢ - required accuracy of the iteration process.

To calculate the functional gradient the function T;,(r™"),
included in (9), within A should be taken a Taylor series expan-
sion by retention of linear components against AL™ [16]. We come
to the following equation:
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In this case the functional (13) gradient components are calcu-
lated by the following equations:
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where 3 - (M + 1) - number of desired parameters.

The functional gradient vector with components (14) can be
represented in the following vector-matrix form:
gradS(™ ) = ZT W) (TL™) — T) + ZT (™) Z(™)An™ (15)
where the upper index «T» means conjugation and Z matrix has the
following view:
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