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a b s t r a c t

Moving heat load problems appear in many manufacturing processes, such as lithography, welding,
grinding, and additive manufacturing. The simulation of moving heat load problems by the finite-
element method poses several numerical challenges, which may lead to time consuming computations.
In this paper, we propose a 2D semi-analytic model in which the problem in two spatial dimensions is
decoupled into three problems in one spatial dimension. This decoupling significantly reduces the com-
putational time, but also introduces an additional error. The method is applied to a wafer heating exam-
ple, in which the computational time is reduced by a factor 10 at the cost of a 4% error in the temperature
field.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Moving heat load problems occur in many manufacturing pro-
cesses, such as welding [1–8], grinding [9,10], metal cutting
[11,12], laser hardening of metals [13,14], and additive manufac-
turing [15–18]. More recently, moving heat load problems are also
studied in precision engineering because of their emerging rele-
vance in lithography systems for the semiconductor industry.
Because this is still an emerging problem only a few introductory
references are available [19–21]. In the lithography application, it
is customary to consider a two-dimensional (2D) spatial domain
(see [20,21]), whereas three-dimensional (3D) spatial domains
are typical for the other applications.

The basis of the theory for moving heat sources was developed
by Rosenthal [1,22], who observed that when the path of the heat
load is long enough, the temperature distribution around the
source soon becomes constant. Assuming constant material prop-
erties, Rosenthal developed closed-form analytic expressions for
these quasi-stationary temperature fields resulting from point,
line, and plane heat sources. Although Rosenthal’s analysis pro-
vides valuable estimates, transient effects and position or
temperature-dependent coefficients are important in many

applications. In these situations the problem is solved by Finite Ele-
ment (FE) analysis (see for example [2,3,16]).

Solving a moving heat load problem by the FE method poses
several numerical challenges. One problem is that by fixing the
coordinate frame to the heat load we obtain a convection-
diffusion problem. It is well known that the FE discretization of
such problems may result in spurious oscilations [23]. Spurious
oscilations can be prevented in two ways. In the first approach,
the mesh size in the direction of the velocity of the moving load
is chosen smaller than 2D=v , where D [m2/s] denotes the thermal
diffusivity of the material and v [m/s] denotes the velocity of the
moving load [23]. Note that this approach is computationally
demanding when the velocity v is high. In the second approach,
upwinding schemes [23,24] are used. These schemes prevent spu-
rious oscilations at the cost of an increased discretization error.

Another problem is that the area in which the heat load is
applied is typically small. This makes both the spatial and temporal
discretization of such problems computationally demanding. For
example, Zhang et al. [15] report that for a Gaussian heat distribu-
tion, the mesh size should be at least twice as small as the radius of
the heat distribution and at least two time steps are needed for the
time that the heat load travels along one element.

Because of these considerations, many problems require a small
mesh size. For a static mesh, this mesh size needs to be used in the
whole region through which the heat load travels, which results in
models with many Degrees of Freedom (DOFs). To keep the
number of DOFs limited, adaptive meshing strategies have been
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proposed [3,4,17], which lead to significant reduction in computa-
tional effort. Note that these schemes require some cost for updat-
ing the mesh and that the temporal discretization remains
challenging, since the adaptive mesh will keep the mesh size near
the source small.

For problems with constant coefficients, spatial discretization
can be avoided by semi-analytic methods [5–8,25]. In these meth-
ods, the temperature field is expressed as the convolution of the
fundamental solution of the heat equation and the applied heat
load. The convolution over space can typically be solved analyti-
cally, so that only numerical evaluation of the convolution over
time remains. This is still a computationally intensive operation
when the solution is evaluated on a fine grid.

In this paper, we propose a novel semi-analytic approximation
method to reduce the computational cost of 2D transient moving
load problems with constant coefficients. We construct a semi-
analytic approximation in which we decouple the problem in
two spatial dimensions into three problems in one spatial dimen-
sion. This significantly reduces the computational cost, especially
on fine grids. The proposed method is demonstrated by an example
from precision engineering, more specifically for a wafer heating
problem.

The remainder of this paper is structured as follows. In Section 2,
the semi-analytic approximation for the temperature field is intro-
duced on an infinite domain. In Section 3, we give a physical inter-
pretation of the semi-analytic approximation. In Section 4, we
discuss the modeling of edge effects and repetitive scanning pat-
terns, which are typically encountered in lithography and additive
manufacturing. In Section 5, we apply the developed techniques in
a wafer heating example. In Section 6, the conclusions are pre-
sented and the results are discussed.

2. Semi-analytic approximation

2.1. Problem formulation

We consider heat conduction in a thin infinite plate with thick-
ness H [m] and constant material properties (see Fig. 1). The heat
losses to the surrounding media at the top and bottom of the plate
are proportional to the temperature with constant heat transfer

coefficients htop
c and hbot

c [W/m2 K], respectively. Because the plate
is thin, the temperature gradient along the thickness of the plate
can be neglected. The resulting temperature field T2D ¼ T2Dðx; y; tÞ
[K] relative to a reference temperature Tr satisfies the heat equa-
tion, see for example [22]

qcH
@T2D

@t
¼ kH

@2T2D

@x2
þ @2T2D

@y2

 !
� htop

c þ hbot
c

� �
T2D þ Q ; ð1Þ

where q [kg/m3] is the mass density, c [J/kg K] the heat capacity, k
[W/mK] the thermal conductivity, and Q [W/m2] the applied heat

load. We will consider (1) on the unbounded domain ðx; yÞ 2 R2

with zero initial conditions T2Dðx; y; t ¼ 0Þ ¼ 0.
We assume that the heat load Q is of the form

Qðx; y; tÞ ¼ XðxÞYðy� vtÞ�QðtÞ; ð2Þ
where XðxÞ P 0 [1/m] describes the shape of the applied heat load
in the x-direction, YðyÞ P 0 [1/m] describes the shape of the applied
heat load in the y-direction, v [m/s] denotes the velocity of the mov-
ing load and �QðtÞ P 0 [W] is the net amount of heat applied at time
t. Note that the uniform heat load applied in a rectangular area
shown in Fig. 1 can be written in this form by taking block functions
for XðxÞ and YðyÞ. Such a heat load has been considered in laser
hardening [14] and will also be considered in the lithography exam-
ple in Section 5. Also the Gaussian heat distribution considered in
many applications (see for example [2,3,15,18]) is of the form in
(2). Observe that Q moves with a constant velocity v in positive y-
direction.

When we divide (1) by qcH, we obtain

@T2D

@t
¼ D

@2T2D

@x2
þ @2T2D

@y2

 !
� hT2D þH; ð3Þ

where D ¼ k=qc > 0 [m2/s] denotes the thermal diffusivity,

h ¼ ðhtop
c þ hbot

c Þ=ðqcHÞ P 0 [1/s], and H ¼ Q=ðqcHÞ [K/s] can be
written as

Hðx; y; tÞ ¼ XðxÞYðy� vtÞ �HðtÞ; ð4Þ
where �HðtÞ ¼ �QðtÞ=ðqcHÞ [m2 K/s].

The fundamental solution of (3) (i.e. the response of the homo-
geneous equation (3) with H � 0 resulting from the initial condi-
tion T2Dðx; y; t ¼ 0Þ ¼ T0dðxÞdðyÞ, with T0 ¼ 1 [m2 K]) is given by

T0U2Dðx; y; tÞ ¼ T0e�htUðx; tÞUðy; tÞ; ð5Þ
where Uðx; tÞ denotes the fundamental solution of the heat equation
in one spatial dimension

Uðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4Dpt

p exp
�x2

4Dt

� �
: ð6Þ

This can be checked by differentiating (5) to time and using that
Uðx; tÞ is the solution to the one-dimensional (1D) heat equation

(i.e. @U
@t ¼ D @2U

@x2 ). Since we are assuming zero initial conditions,
Duhamel’s principle [26] asserts that

T2Dðx; y; tÞ ¼
Z t

0

Z þ1

�1

Z þ1

�1
U2Dðx0; y0; sÞHðx� x0; y� y0; t

� sÞ dx0 dy0 ds: ð7Þ
When we subsitute (4) and (5) in this equation, we find that

T2Dðx; y; tÞ ¼
Z t

0
f ðy; t; sÞNðx; sÞ ds; ð8Þ

where we have introduced

f ðy; t; sÞ ¼
Z þ1

�1
e�hsUðy0; sÞYðy� y0 � vðt � sÞÞ �Hðt � sÞ dy0; ð9Þ

Nðx; sÞ ¼
Z þ1

�1
Uðx0; sÞXðx� x0Þ dx0: ð10Þ

2.2. The approximate solution

We will introduce an approximate solution by simplifying the
integral in (8). Note that the only factor in (8) that depends on x
is Nðx; sÞ. In our semi-analytic approximation, we move this factor
outside the integral.Fig. 1. The considered infinite plate.

D.W.M. Veldman et al. / International Journal of Heat and Mass Transfer 122 (2018) 128–137 129



Download English Version:

https://daneshyari.com/en/article/7054339

Download Persian Version:

https://daneshyari.com/article/7054339

Daneshyari.com

https://daneshyari.com/en/article/7054339
https://daneshyari.com/article/7054339
https://daneshyari.com

