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a b s t r a c t

In this article, the thermodynamic constraints of Brownian coagulation are proposed based on the binary
perfectly inelastic collision theory and the principle of maximum entropy. The constraints can be
expressed as inequalities with the Taylor series expansion method of moments. The inequalities establish
the relationship between the physical parameters (such as temperature and specific surface energy) and
the first three integral moments of particles. The inequalities are verified to determine the critical time
for Brownian coagulation to reach the thermodynamic equilibrium. The critical time is proportional to
the specific surface energy and inversely related to the temperature, which can be used to determine
whether the particle size distribution reaches self-preserving form. Moreover, the critical states provide
a new approach for detecting the particle specific surface energy with the moment method. The results
further explain Brownian coagulation and offer opportunities to improve environmental quality from the
viewpoint of thermodynamics.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The aggregation kinetics of particles suspended in fluid deter-
mines the aggregate size distribution. It is of fundamental interest
in aerosol science and has vital implications for areas such as pow-
der technology and controlling air pollution [1]. The collision pro-
cess among coalescing spherical particles due to random motion is
called Brownian coagulation. Brownian coagulation is usually pre-
dominant in colloidal particles.

The kinetics of Brownian coagulation is described based on
either the Smoluchowski approach or the population balance equa-
tion (PBE). In terms of continuous variables, the PBE for Brownian
coagulation among particles is written as [1]
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in which n(t, t)dt is the number of particles per unit of spatial vol-
ume with a particle volume from t to t + dt at time t, and b is the
collision frequency function of Brownian coagulation.

A particle system is unstable with respect to coagulation. Parti-
cle collision and coagulation decrease the total number of particles
and increase the average particle size. The asymptotic solution of
the PBE reveals that the particle size distribution approaches the
self-preserving size distribution (SPSD) after long periods [1].
According to the rule of statistical physics [2], Shannon informa-
tion entropy is interpreted as a state function of a thermodynamic
system and is proportional to the total number of particles. There-
fore, a reduction in the total number of particles corresponds to a
reduction in the information entropy of a particle system, which
must be accompanied by a change of system energy in a dissipative
system in accordance with the second law of thermodynamics.

In the classical theory of coagulation, coalescence occurs instan-
taneously after two particles collide and a new sphere forms [3]. In
this theory, the time scale of the collision of two particles is far
smaller than the time scale of particle number evolution. Further-
more, collided particles such as aerosols in the air and droplets in
clouds need very little time to become spherical. Therefore, Brow-
nian coagulation can be considered a perfectly inelastic collision
process because kinetic energy is not conserved due to the action
of internal friction. Kinetic energy is usually exchanged between
the particles’ translational motion and the internal degrees of free-
domwith each collision. In a perfectly inelastic collision, the collid-
ing particles stick together and the maximum amount of kinetic
energy of the system is lost. Concurrently, the particle specific
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surface area of the system decreases with an increase in the aver-
age particle volume. A reduction in the particle specific surface
area corresponds to a reduction in the surface free energy under
conditions of constant temperature and pressure [1].

In the present study, the rates of change for particle specific sur-
face area, particle kinetic energy, chemical potential, and entropy
are analyzed based on the binary perfectly inelastic collision theory
and the moment method for Brownian coagulation from the per-
spective of the kinematics and dynamics of a dissipative system.
Based on the principle of maximum entropy and the second law
of thermodynamics, the physical constraints of Brownian coagula-
tion are quantitatively proposed in the form of inequalities, which
can be regarded as an adjoint equation of the PBE.

2. Theory

2.1. Binary perfectly inelastic collision theory

Particles are assumed to be spherical. When two particles col-
lide, they coalesce instantaneously to form a third one whose vol-
ume is equal to the sum of the original two. This assumption
applies to processes in which the collisional time scale of two par-
ticles is far smaller than the time scale of the evolution of particle
number of the whole system. According to the simplified physical
model for the binary perfectly inelastic collision theory, perfectly
inelastic collisions must obey the conservation of mass and
momentum.

For mass conservation, the mass of combined particles can be
written as

m ¼ m1 þm2 ð2Þ
where m is the mass of a particle. If the particle density is homoge-
nous as qp, then

t ¼ t1 þ t2 ð3Þ
where t is the volume of combined particles with volume t1 and t2.
For momentum conservation, it is

mu ¼ m1u1 þm2u2 ð4Þ
where u is the velocity of particles due to Brownian motion. The loss
of particle kinetic energy after collision can be expressed as
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where ke represents the kinetic energy. The reduction in particle
surface area after collision is
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where s represents particle specific surface area. By integrating it
for all particle sizes, the rate of change for kinetic energy can be
expressed as
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where b(t1, t2) is the coagulation kernel for two particles with vol-
ume t1 and t2. Because the particles share the molecular thermal
motion of the fluid at a certain temperature and pressure, the prin-
ciple of equipartition of energy is assumed to apply to the transla-
tional energy of the particles [1]; that is

u2 ¼ kBT
m

ð8Þ

in which kB is the Boltzmann constant, and T is the temperature.
Then, the rate of change for particle kinetic energy can be written as
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and the rate of change for particle specific surface area can be
obtained as
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Nomenclature

B1 coefficient of collision kernel function in free-molecule
regime

B2 coefficient of collision kernel function in continuum re-
gime

C the constant
ke particle kinetic energy
kB Boltzmann constant
k real number
Mk k-th order moment
MC dimensionless particle moment
M0 zero-th moment, which is the total particle number

density
M1 first moment
M2 second moment
m mass of particle
NA Avogadro constant
n particle number density
S entropy of particulate system
s particle specific surface area
T fluid temperature
TC critical temperature
t time variant
U internal energy of particle system

u particle velocity
V total volume of particles
Vm molar volume of liquid pure substance
t particle volume

Greek letters
b collision frequency
r particle specific surface energy
l gas viscosity
qp particle density
kth thermal wavelength
⁄ Planck constant
j the ratio coefficient

Abbreviations
CR continuum regime
FM free-molecule regime
LHS left hand side
PBE population balance equation
RHS right-hand side
SPSD self-preserving size distribution
TEMOM Taylor series expansion method of moments
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