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a b s t r a c t

Non-Fourier heat conduction models assume wave-like behavior does exist in the heat conduction pro-
cess. Based on this wave-like behavior, thermal conduction controlled in a one-dimensional periodical
structure, named thermal wave crystal, has been demonstrated through both theoretical analysis and
numerical simulation based on the Cattaneo-Vernotte (CV) heat-conduction model. The transfer matrix
method and Bloch theorem have been applied to calculate the complex dispersion curves of thermal
wave propagating in thermal wave crystals. And the temperature responses are obtained by using the
FDTD method. The results show that the band gaps with pronounced heat reduction do exist in non-
Fourier thermal transfer process because of the Bragg scattering. The mid-gap frequency is well predicted
analytically based on the Bragg scattering mechanism. Finally, the key parameters determining the band
gaps are presented and discussed. This study shows the potential applications of these materials in heat
isolation and reduction.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional Fourier conduction law with implicit assumption of
instantaneous thermal propagation is no longer applicable under
specific conditions such as ultralow temperature, micro scale and
biological tissues. In 1958, Cattaneo [1] and Vernotte [2] separately
proposed a model with a time lag between the heat flux vector and
the temperature gradient. In the one-dimensional (1D) case, the
Cattaneo-Vernotte (CV) heat-conduction model can be written as

qþ sq
@q
@t

¼ �j @T
@x

; ð1Þ

where q and T are heat flux and temperature, respectively; sq is the
relaxation time for the phonon collision; and j is the thermal con-
ductivity. The equation of energy conservation is given by [3]
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¼ �qcp @T
@t

þ Q ; ð2Þ

where Q is the internal energy generation rate; q is the mass den-
sity; and cp is the specific heat. Substitution of Eq. (1) into Eq. (2)
yields [3]
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It is noted that Eq. (3) is a hyperbolic heat wave conduction equa-
tion. The heat propagates in the medium with a finite speed:

CCV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðqcpsqÞ�1

q
[3].

The CV model is the simplest but rather rough model in describ-
ing the non-Fourier heat conduction. In order to describe the phys-
ical process more precisely, more generalized models were
proposed, e.g. the dual phase lag model [4,5], the thermomass
model [6,7] and the EIT model [8,9]. Due to the peculiarity of the
hyperbolic wave equations in these models, efforts have been
exerted on the wave-like behavior in the past several decades.
Reviews of thermal propagation in the non-Fourier theory were
given by Joseph et al. [10], Tzou et al. [11], Xu et al. [12] among
others. Wang et al. [13] examined the non-Fourier thermal oscilla-
tion and resonance in a 1D homogeneous medium analytically
with oscillatory temperature boundary conditions. Zhao et al.
[14] analyzed the non-Fourier thermal behavior in a solid sphere.
Ma et al. [15] studied the non-Fourier thermal process in functional
graded materials. Furthermore, Moosaie et al. [16–19] presented
the non-Fourier effect under periodical boundary and non-
periodical boundary conditions in 1D or a hollow sphere homoge-
neous medium analytically.

It is well known that wave manipulation is an eternal, impor-
tant and challenging issue. In past decades, control of electromag-
netic waves by photonic crystals [20,21] and control of acoustic or
elastic waves by phononic crystal [22–24] have been received con-
siderable attention. We refer to Refs. [25–27] for detailed reviews
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in these fields. Analogously, based on the fact that thermal conduc-
tion can be modeled by ballistic phonon transport in micro-scale,
control of thermal conduction by using periodic micro-scale struc-
tures has attracted considerable attention. Early, thermal conduc-
tion in superlattices was considered [28–31]. Recently, Maldovan
proposed a concept of ‘‘thermocrystal” based on nano-scale phono-
nic crystals which can manage the thermal energy flow [32–35].
Similar studies were undertaken by Zen et al. [36], Nomura et al.
[37], Davis et al. [38], Lacatena et al. [39], and Anufriev et al. [40]
among others with focus on reducing the thermal conductivity
by using nano-scale phononic crystals. It is noted that the afore-
mentioned studies are limited to micro-scale because the ballistic
phonon transport model of thermal conduction and coherent ther-
mal transfer is applied. Tzou [41] develop a way to relate micro-
scale to macro-scale heat transfer, where the wave-like behavior
(i.e. thermal wave) was included in the process of thermal transfer
based on the fact of the finite time required for completing the
interactions between particles. The CV model, equations (1)–(3),
can describe this kind of wave-like behavior although it is rather
rough. In this Article, we will discuss thermal wave propagation
through a periodically layered structure based on the CV model
and Bloch theory [42]. Band gaps with pronounced heat reduction
are found in the spectrum. This new class of artificial thermal
material will be named ‘thermal wave crystal’ which can control
heat wave analogy to a photonic crystal for control of electromag-
netic waves [43] and a phononic crystal for control of acoustic or
elastic waves [27]. It is expected to have a variety of applications
in manipulating heat waves including heat isolation or reduction
[44].

2. Problem formulation

Consider a periodically layered structure with bilayer unit-cells
as shown in Fig. 1. Each unit-cell consists of layer (sub-cell) A with
thickness lA and layer B with thickness lB (the unit-cell’s thickness
l ¼ lA þ lB). All material properties {j, sq, q, cp, CCV } of the two lay-
ers are distinguished by subscripts A and B. The coordinate (x, y) is
shown in the figure. We number an arbitrary unit-cell as the jth

unit-cell. Its left and right boundaries coordinates are x j
L ¼ jl and

x j
R ¼ ðjþ 1Þl, respectively; and the coordinate of the interface

between layers A and B is x j
AB ¼ jlþ lA.

A 1D thermal wave propagates in the periodic structure without
any internal heat source or loss (i.e. Q = 0). For a time-harmonic
thermal wave with angular frequencyx, the temperature and heat

flux fields may be written as fTðx; tÞ; qðx; tÞg ¼ fT̂ðxÞ; q̂ðxÞge�ixt

with T̂ðxÞ satisfying

T̂ 00ðxÞ þx2 þ ix=sq
C2
CV

T̂ðxÞ ¼ 0; ð4Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. The general solution of equation (4) is

T̂ðxÞ ¼ A1eicx þ A2e�icx; ð5Þ

where A1 and A2 are unknown coefficients, and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ix=sq

C2
CV

s
; ð6Þ

of which the real part demonstrates propagating of the thermal
wave and the imaginary part characterizes the attenuation. The
heat flux q̂ðxÞ is obtained by following Eq. (2),

q̂ðxÞ ¼ �A1
ijc

1� ixsq
eicx þ A2

ijc
1� ixsq

e�icx: ð7Þ

For conciseness, the following state vector is introduced,

SðxÞ ¼ fT̂ðxÞ; q̂ðxÞgT ¼ MðxÞfA1; A2gT; ð8Þ
where the superscript T denotes the transpose, and

MðxÞ ¼
1 1

� ijc
1�ixsq

ijc
1�ixsq

 !
eicx 0
0 e�icx

 !
: ð9Þ

The above solution holds for both layers A and B, and is denoted

as S j
AðxÞ ¼ M j

AðxÞfA1; A2gT (with x j
L < x < x j

AB) in layer A of the jth

unit-cell or S j
BðxÞ ¼ M j

BðxÞfB1; B2gT (with x j
AB < x < x j

R) in layer B.

The matric M j
AðxÞ and M j

BðxÞ are obtained from equation (9) by
replacing j, sq, c, CCV with those with the subscripts of A and B,
respectively.

Next the transfer matrix method [45,46] is used to calculate dis-
persion relations. Introduce the state vectors at the left and right

boundaries of layers A and B: S j
AL ¼ S j

Aðx j
LÞ, S j

AR ¼ S j
Aðx j

ABÞ,
S j
BL ¼ S j

Bðx j
ABÞ and S j

BR ¼ S j
Bðx j

RÞ. Then from equation (8) it is easy to
obtain the relations:

S j
AL ¼ M j

Aðx j
LÞfA1; A2gT; S j

AR ¼ M j
Aðx j

ABÞfA1; A2gT;
S j
BL ¼ M j

Bðx j
ABÞfB1; B2gT; S j

BR ¼ M j
Bðx j

RÞfB1; B2gT:

Eliminating fA1; A2gT from the first two equations and fB1; B2gT
from the last two yields

S j
AR ¼ M j

ARðM j
ALÞ

�1
S j
AL; S

j
BR ¼ M j

BRðM j
BLÞ

�1
S j
BL; ð10Þ

where M j
AL ¼ M j

Aðx j
LÞ, M j

AR ¼ M j
Aðx j

ABÞ, M j
BL ¼ M j

Bðx j
ABÞ and

M j
BR ¼ M j

Bðx j
RÞ .

The temperature and heat flux are continuous at the interface
between two adjacent sub-layers, which states

S j
AR ¼ S j

BL; S
j
BR ¼ Sjþ1

AL : ð11Þ
Substitution of Eq. (10) into Eq. (11) yields

M j
ARðM j

ALÞ
�1
S j
AL ¼ S j

BL;M
j
BRðM j

BLÞ
�1
S j
BL ¼ Sjþ1

AL :

Eliminating S j
BL from the above two equations, we have

Sjþ1
AL ¼ M j

BRðM j
BLÞ

�1
M j

ARðM j
ALÞ

�1
S j
AL; ð12Þ

which gives the relationship between the state vectors of the jth

and (j + 1)th unit-cells. The matrix M j
BRðM j

BLÞ
�1
M j

ARðM j
ALÞ

�1
is the

transfer matrix between two consecutive unit-cells, which is the
same for any value of j and therefore is denoted as MTransfer .

It was found by Felix Bloch [47] that the electron wave gov-
erned by the Schrödinger’s equation in a periodic potential field
is modulated by the periodicity and propagates with the form of
uðrÞeik�r where uðrÞ is a periodic function with the same periodic-
ity as the potential field. This is the so-called Bloch theorem; and
the wave is called Bloch wave with k being Bloch wave vector
[48]. The Bloch theoremwas proved to hold for general wave equa-
tions including those for classical waves (e.g. lattice wave [48],
electromagnetic wave [47], acoustic or elastic wave [27], etc.).

lA + lB = l jth unit
cell

A B

y

x

A B A B A B A B A B
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Fig. 1. Schematic diagram of a 1D thermal wave crystal.
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