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a b s t r a c t

The linear stability of thermocapillary liquid layer of a Bingham-plastic fluid is studied. Due to the yield
stress of Bingham fluid, there is a plug region in the flow, which divides the yielded flow into two regions.
When the flow is subjected to a small perturbation, the velocity perturbation below the upper surface of
plug region is negligible, while the temperature perturbation can be found in all flow regions at moderate
and small Prandtl numbers (Pr). The perturbation amplitude of the upper surface of plug region decreases
rapidly with the increase of Pr. The preferred modes are the upstream oblique wave and the downstream
streamwise wave at small and large Pr, respectively. The effects of the yield stress, gravity and the inter-
facial heat transfer on the flow stability are discussed. The perturbation amplitude only appears above the
plug region, which differs from the cases in the plane Bingham–Poiseuille flow and the thermocapillary
liquid layer of a Carreau fluid.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A liquid layer will be set in motion by a temperature-induced
surface tension gradient when a horizontal temperature gradient
is imposed on its surface. This flow is called the thermocapillary
convection. Due to its important role in crystal growth [1], the
thermocapillary convection has been studied extensively [2].
Recently, the thermocapillary flows of non-Newtonian fluids have
also received much attention for its great practical importance in
film coating [3], film drying [4], dewetting [5], lithography [6],
inkjet printing [7] and polymer processing in microgravity [8].
The non-Newtonian effect makes the flow property vary consider-
ably from that of a Newtonian fluid.

The viscoelastic thermocapillary liquid layers have been inves-
tigated by many authors [9–12]. It is found that although the elas-
ticity does not change the velocity and temperature distributions
in the basic flow, due to the normal stress, the flow stability is
affected by the elasticity significantly. There are also a few papers
devoted to the study of thermocapillary flows of shear-thinning
fluids [13–15]. For linear flow, the shear-thinning effect does not
change the basic flow, however, it is destabilizing at small and
moderate Pr but increases the stability slightly at large Pr. For
return flow, the shear-thinning effect leads to a viscosity

stratification in the basic flow, the streamwise wave is excited at
large Pr, and a new mechanism is found at moderate Pr, where
the hot spots appear at the bottom of the layer [15]. However, to
the best of our knowledge, the thermocapillary liquid layer of vis-
coplastic fluids has not been investigated.

Viscoplastic fluids appear in many industrial applications and
nature environment, such as drilling muds [16], polymers [17],
mucus [18] and lava [19]. The main feature of a viscoplastic fluid
is its yield stress: it exhibits liquid-like behaviour when it is suffi-
ciently stressed, and solid-like behaviour when the stress is low.
Due to the special property and wide applications, there are many
works devoted to the study of viscoplastic fluids. The recent devel-
opments have been reviewed by Balmforth, Frigaard & Ovarlez
[18].

One of the ideal models for viscoplastic fluids is the Bingham
fluid, which exhibits a yield stress and a plastic viscosity [20].
The Bingham fluid has been widely used in theoretical studies for
its simplicity [21]. In many Bingham fluid flows, there can be a
region where the shear stress is less than the yield stress. It
behaves as a rigid body and is called the plug region or unyielded
region. The inclusion of a plug region makes the flow stability of a
Bingham fluid quite different from those of other fluids.

The shear flow stabilities of Bingham fluids have been studied in
many works, which indicate that the flow is stabilized by the effect
of the yield stress. Frigaard, Howison & Sobey [16] have examined
the stability of plane Poiseuille flow of a Bingham fluid, and found
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that the critical Reynolds number increases almost linearly with
increasing Bingham number. The nonlinear stability analysis has
been performed by Nouar & Frigaard [22]. The results showed that
the critical Reynolds number R increases like R ¼ OðB1=2Þ when the
Bingham number B ! 1. On the other hand, the three-
dimensional linear stability analysis performed by Frigaard and
Nouar [23] suggested that when B ! 1, a critical Reynolds number
R ¼ OðB3=4Þ is bounded for all wavelengths. The receptivity prob-
lem of plane Bingham–Poiseuille flow with respect to weak pertur-
bations has been investigated using modal and non-modal
approaches by Nouar et al. [24]. It has been reported that when
B � 1, the optimal disturbance consists of almost streamwise vor-
tices, whereas at moderate or large B, the optimal disturbance
becomes oblique. Nouar & Bottaro [25] have revisited the problem
for the case in which the idealized base flow is slightly perturbed.
The results suggested that very weak defects are indeed capable to
excite exponentially amplified streamwise travelling waves. The
study of the stability of Bingham fluid flows has been extended
to the spiral Couette flow [26] and Taylor-Couette flow [27].

The purpose of this paper is to examine the thermocapillary
convection of a Bingham fluid in an infinite liquid layer and its sta-
bility, which have not been studied before. The works of Bingham
fluid have demonstrated that the flow stability depends on the
Bingham number obviously. So we have reasons to believe that
there can be something new in the thermocapillary convection of
a Bingham fluid, which are different from those in other fluids.

The paper is organized as follows. In Section 2, the physical
model and numerical descriptions of the problem are presented.
The basic flow solutions and perturbation equations are derived.
Then in Section 3, critical parameters at different Bingham number,
Bond number and Biot number are obtained; the perturbations of
the velocity, temperature and yield surface are displayed and the
energy mechanism is studied; the instability is discussed and com-
parisons are made with other fluids and flows. Finally, our conclu-
sions are presented in Section 4.

2. Problem formulation

The model of thermocapillary liquid layer [28] is applied in the
present work, where a fluid layer on an infinite rigid plane is sub-
jected to a temperature gradient on the free surface. The instability
behaviours predicted by this model have been observed in both
experiment [29] and numerical simulation [30]. In Fig. 1, d is the

depth of the layer, U0 is the velocity, x; y; z are the streamwise,
spanwise and wall-normal directions, respectively. As the shear
rate in the interior of the layer is smaller than that near the surface
and wall, there will be a plug region in the middle of the layer. The
flow consists of three regions: I and II are yielded regions where
the shear stress is larger than the yield stress, while III is the
unyielded or plug region. The ranges of I, II and III are ½0; z0�,
½z0 þ h0;1�, and ðz0; z0 þ h0Þ, respectively. Here, 0 < z0 < z0 þ h0 < 1.

2.1. Governing equations

The scaled constitutive equation of a Bingham fluid can be writ-
ten as follows [24],

s ¼ l _c () s >
B
R
; ð2:1Þ

_c ¼ 0 () s 6 B
R
; ð2:2Þ

l ¼ 1
R

1þ B
_c

� �
; ð2:3Þ

where s is the stress tensor, l is the dimensionless effective viscos-
ity, _c is the strain-rate tensor with the form _c ¼ ruþ ðruÞT;
u ¼ ðu; v;wÞ is the velocity, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_sij _sij=2
p

and _c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_cij _cij=2

p
are the

Fig. 1. The schematic of the thermocapillary liquid layer for a Bingham fluid. Here, I
and II are yielded regions, III is the plug region, d is the depth of the layer, z0 is the
length of the yielded region II, h0 is the length of the plug region, U0 is the velocity
field.

Nomenclature

â thermal expansion coefficient
b temperature gradient on the surface
B ¼ s0d=l0Û0 Bingham number

Bi ¼ ĥd=k̂ Biot number
Bo ¼ qgâd2=c dynamic Bond number
c ¼ �ri=k wave speed
d depth of the layer
g gravitational acceleration
h0 length of the plug region
h� perturbations of the yield surface
ĥ surface heat transfer coefficient
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
wave number of wave propagation

k̂ thermal conductivity
Ma ¼ bcd2=l0v Marangoni number
Pr ¼ l0=qv Prandtl number
~Q imposed heat flux to the environment
R ¼ qbU0d=l0 Reynolds number
ðu; T; P; sÞ velocity, pressure, temperature and stress

bU0 ¼ bcd=l0 characteristic velocity
z0 length of the yielded region
a; b wave number in the x and y directions
c negative rate of change of surface tension with

temperature
_c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_cij _cij=2

q
second invariant of _c

_c strain-rate tensor
d=dt upper convected derivative
l dimensionless effective viscosity
l0 plastic viscosity
q fluid density
~r surface tension
rr ;ri growth rate and frequency of small perturbation
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_sij _sij=2

q
second invariant of s

s0 yield stress
/ propagation angle
v thermal diffusivity
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