ELSEVIER

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Hybrid LES/DNS of turbulent forced and aided mixed convection to a liquid metal flowing in a vertical concentric annulus

L. Marocco

Politecnico di Milano, Department of Energy, via Lambruschini 4, 20156 Milan, Italy

ARTICLE INFO

Article history: Received 24 October 2017 Received in revised form 28 November 2017 Accepted 3 January 2018 Available online 11 January 2018

Keywords: Liquid metals Mixed convection Concentric annulus LES

ABSTRACT

In the present study fully-developed turbulent forced and mixed convection heat transfer to a liquid metal flowing upwards in a concentric annulus is numerically investigated by means of Large Eddy Simulation (LES). The inner-to-outer radius ratio is 0.5. The Reynolds number based on bulk velocity and hydraulic diameter is 8900, while the Prandtl number is set to a value of 0.026. A uniform and equal heat flux is applied on both walls. Three different buoyancy strengths are considered, corresponding to onset of turbulence reduction, maximum impairment and recovery condition on the inner wall while recovery and enhancement develop on the outer wall. Due to the difference between thermal and hydrodynamic turbulent scales in liquid metals it is shown that with the same grid resolution a LES is performed for the flow field and at the same time a "thermal" Direct Numerical Simulation (DNS) for the temperature field. From a detailed analysis of the two-point correlation functions of velocity and temperature fluctuations it emerges that a streamwise extent of 25δ and 40δ (being δ the half gap width) is necessary for forced and mixed convection, respectively, while a quarter of circumference is enough in azimuthal direction for this radius ratio, Reynolds and Prandtl number. Comparison of the forced convection flow field with available DNS simulations shows very good agreement. Nusselt numbers evaluated from the few available literature correlations for liquid metals flowing in an annulus give unsatisfactory results, mainly on the inner wall. The mixed convection results are thoroughly analyzed and discussed in terms of friction factor, Nusselt number, first and second order statistics, budgets of turbulent kinetic energy and budgets of temperature variance. The obtained data are also useful for validating Reynolds-Averaged turbulence models, Moreover, simulations with two coarser grids at the condition of maximum turbulence reduction are also compared with the reference results of the fine LES. It results that when turbulence is impaired the grid resolution in circumferential direction can be strongly coarsened.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Liquid metals have excellent heat transfer characteristics mainly due to their very high thermal conductivity. Their corresponding Prandtl number is low, from 10^{-3} up to $5 \cdot 10^{-2}$. The thermal viscous sublayer of liquid metals is much thicker than the corresponding hydrodynamic one, implying a significant molecular contribution to heat transfer also for Reynolds numbers, at which the turbulent energy exchange prevails for medium-to-high Prandtl number fluids, like gases, common liquids or oils. This paper is the companion of a previous study of the same author [1], where turbulent aided mixed convection has been analyzed at the same Reynolds and Prandtl number but for only one single buoyancy strength and with two coarse grids. In the present work

the results found in Ref. [1] are extended by considering three buoyancy strengths, corresponding on the inner wall to the conditions of onset of turbulence reduction, maximum reduction and turbulence recovery. On the outer wall the same boundary conditions result in turbulence recovery and its enhancement. A hybrid LES/DNS approach is used, i.e. with same grid resolution a LES is done for the velocity field and a DNS for the temperature field. This is possible, being for low-Prandtl number fluids the smallest turbulent temperature scales much larger than the corresponding smallest velocity scales. This technique can be used to obtain sufficiently accurate results for liquid metal flows with a much coarser grid resolution than required for a full DNS and for higher Reynolds numbers. Simulations are carried out for an annulus with an inner-to-outer radius ratio of 0.5 at a Reynolds number of Re = 8900, a Prandtl number of Pr = 0.026 and with a constant and uniform heat flux applied on both walls. A much finer grid

Nomenclature Roman letters Δx , Δy , $\Delta \theta$ grid spacing in axial, radial and circumferential Buoyancy number Eq. (5) (-) direction (m) Darcy-Weisbach friction factor (-) mean grid size (m) C_D Δ Fanning friction factor (-) half gap width $\delta = (r_0 - r_i)/2$ (m) C_f δ specific heat capacity at constant pressure (I/kg K) Kronecker delta (-) δ_{ij} c_p \hat{d}_h hydraulic diameter $d_h = 4\delta$ (m) dissipation rate of k(-)3 Kolmogorov length scale $\eta = (v^3/\varepsilon)^{1/4}$ (m) acceleration of gravity in negative axial direction (m/s²) g Corrsin length scale $\eta_T = \eta P r^{-3/4} (m)$ Grashof number $Gr_q = \frac{g\beta q_w d_h^4}{v^2 \lambda} (-)$ Gr_a η_T molecular thermal conductivity (W/mK) turbulent kinetic energy (-) k kinematic viscosity (m²/s) streamwise domain extent (m) turbulent kinematic viscosity (m²/s) v_t N_x , N_r , N_θ number of control volumes in axial, radial and circumsubgrid kinematic viscosity (m²/s) v_{sgs} ferential direction (-) density (kg/m³) Nusselt number $Nu = \frac{q_w d_h}{(\overline{T}_w - T_h)} (-)$ Nıı wall shear stress (N/m²) τ_w pressure $\frac{P-gx_i\delta_{i1}}{\rho u_h^2}$ (-) р Θ non-dimensional temperature $\Theta = \frac{T - T_b}{q_w d_b / \lambda} (-)$ Pr Prandtl number (-) wall heat flux (W/m²) q_w **Operators** inner-to-outer radius ratio R_i/R_o (-) averaged over x, θ and tR radius (m) normalized by v, u_{τ} and T_{τ} Reynolds number $Re = u_h d_h / v$ (-) Re fluctuating component two-point correlation coefficient of temperature fluctu- $R_{\Theta'\Theta'}$ Abbreviations and acronyms two-point correlation coefficient of streamwise velocity $R_{u'u'}$ DNS Direct Numerical Simulation fluctuations (-) LES Large Eddy Simulation time (-) **RANS** Reynolds-Averaged Navier-Stokes bulk temperature (K) T_b **RMS** Root Mean Square friction temperature $T_{\tau} = q_w/(\rho c_p u_{\tau})$ (K) T_{τ} LES0 reference Large Eddy Simulation T_{w} wall temperature (K) LES VC very coarse Large Eddy Simulation velocity components in x, r and θ direction (–) u, v, wLES_C coarse Large Eddy Simulation friction velocity $u_{\tau} = \sqrt{\tau_w/\rho}$ (m) u_{τ} i-th and j-th velocity component in cartesian coordi u_i, u_i Subscripts nates (-) forced convection x, r, θ axial, radial and circumferential coordinate (-) b bulk distance from inner or outer wall (m) sgs subgrid-scale-stress inner wall Greek letters mixed convection mx molecular thermal diffusivity (m²/s) α outer wall α_t turbulent thermal diffusivity (m²/s) rms root mean square thermal expansion coefficient (K⁻¹)

resolution than that used in Ref. [1] is here adopted. A sensitivity analysis on the domain extension in streamwise and circumferential directions is done for both forced and mixed convection. The modifications caused by mixed convection with respect to forced convection on friction factors, Nusselt numbers, first and second order statistics, budgets of turbulent kinetic energy and budgets of temperature variance are thoroughly analyzed and discussed. The results obtained with the grids adopted for the simulations in Ref. [1] are now also compared with the reference results of the present fine grid. For an overview of the literature on mixed convection in general and to liquid metals in particular as well as for application fields of liquid metals as heat transfer fluids, the interested reader is referred to Ref. [1] and references therein.

2. Governing equations and numerical method

For the domain sketched in Fig. 1, the non-dimensional continuity, momentum and energy equations, (1)–(3), are solved in cartesian coordinates for an incompressible Newtonian fluid with constant thermophysical properties, no viscous dissipation and with the Boussinesq approximation for buoyancy. All variables are non-dimensionalized by the hydraulic diameter, d_h , and the bulk velocity, u_h . It should be remarked that the velocity and pres-

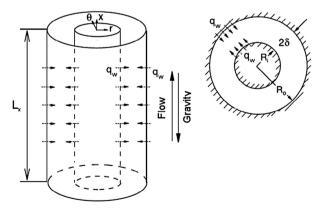


Fig. 1. Schematic of computational domain.

sure are filtered variables and therefore a subgrid-scale viscosity, $v_{\rm sgs}$, appears in the momentum equation. Vice versa, no heat flux model is used for the temperature, which is therefore not a filtered quantity. The validity of this approach is discussed and confirmed in Section 3. The last term on the right-hand side of Eq. (2) arises from considering a periodic flow in streamwise direction, while

Download English Version:

https://daneshyari.com/en/article/7054489

Download Persian Version:

https://daneshyari.com/article/7054489

<u>Daneshyari.com</u>