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a b s t r a c t

This paper is concerned with the thermal and laminar boundary layer flow over rotating axisymmetric
bodies in an otherwise still fluid. The thermal boundary layer flow equations for two types of spheroids
(prolate and oblate) are formulated. Similarly to the previous work of other researchers, the laminar flow
equations for two types of spheroids are also reproduced. Furthermore, the series solutions are derived
for the thermal and laminar flow equations for each body.
The series solutions are numerically calculated and the laminar flow profiles for each spheroid along

with its heat transfer profile are visualized in detail. It is shown that for increasing eccentricity, the con-
vection effects are increasing at higher latitudes of prolate spheroids, while the conduction effects are
dominated at these higher latitudes of oblate spheroids. The results for spheres are reproduced in the case
of zero eccentricity.
By using commercial routines from NAG, the solutions for rotating spheres in the case of laminar flow

are also mentioned as in the previous existing works. In particular, the results from the transformation
technique of solutions are in good agreement with those obtained from NAG in the case of spheres, par-
ticularly at lower latitudes for all eccentricities.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional (3-D) boundary layer flow transition over
rotating disks has been a subject of numerous studies; see, for
instance, [1–9]. These studies are served as the foremost model
problem for the subsequent investigations of the 3-D boundary
layer flows over axisymmetric bodies of revolution. Both theoreti-
cally and experimentally, the case of a flow field structure of the
laminar boundary layer flow over rotating spheres has been greatly
clarified in the investigations of [10–16]. The flow visualization
studies led by the papers [17–23] are related to the transition of
the laminar boundary layer flow over rotating spheres and cones.
The stability and instability of the boundary layer flows on rotating
spheres, spheroids, and disks were reported by Garrett [24], Samad
and Garrett [25], and Griffiths et al. [26].

The theoretical studies of [2,3,27–34] related to the transition
phenomena of the laminar boundary layer flow over various rotat-
ing geometries like disk, sphere and cone were carried out in such a
way that the governing laminar flow equations were first derived
using some appropriate coordinate systems for each geometry.
These laminar flow equations are actually a set of simultaneous
3-D nonlinear partial differential equations and are solved by using
advanced numerical methods. Subsequently, the perturbation
equations that govern the transition of the laminar boundary layer
are derived for each body. The solutions of the laminar flow equa-
tions are then used in solving the related perturbation equations
for each body. Recently, Samad [35] and Samad and Garrett
[36,37] used the techniques in the aforementioned investigations
and successfully derived the laminar flow equations for the general
families of rotating prolate spheroids and oblate spheroids. The
solutions were then used in the transition analysis of the laminar
boundary layer flow over the general families of each type of
spheroids.

The heat transfer problem from a rotating disk maintained at a
constant temperature was first considered by Millsaps and Pohl-
hausen [38], for different Prandtl numbers in the steady state.
The steady state heat transfer from a rotating disk maintained at
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a constant temperature to fluids at a variety of Prandtl numbers
was also discussed by Sparrow and Gregg [39]. The thermal lami-
nar boundary layer on a rotating sphere was investigated numeri-
cally in the work of Banks [40] which we rely and can be
reproduced without any mathematical flaw. In this work, the
results were matched with the experimental work of Kreith et al.
[41] for rotating spheres. However, Banks [40] also investigated
the case when surface temperature is non-uniform for a rotating
sphere which we do not consider for spheroids. We only extend
the results reported by Banks [40] for the uniformly heated spheres
to all types of spheroids. In this paper, we calculate the basic flow
profiles along with the heat transfer profile for both types of spher-
oids (prolate and oblate) using a simple transformation and we
match our results in the case of spheres with those of Banks [40]
and Kreith et al. [41].

2. Laminar and thermal boundary layer over spheroids

In this section, we show the laminar boundary layer flow equa-
tions for both types of regular spheroids, i.e., prolate and oblate
spheroids from Samad [35] and Samad and Garrett [37] for consis-
tency matter. Indeed, we extend the work related to the thermal
boundary layer over spheres by Banks [40] to the general geometry
of rotating spheroids (prolate and oblate) in an otherwise still fluid.
The thermal boundary layer equations for both types of spheroids
are formulated for the first time in this work. The series solutions
are developed for the heat equations. However, these equations are
solved simultaneously with the series solutions of the laminar flow
equations for prolate and oblate spheroids from the work of Samad
and Garrett [37]. The new transformations are also introduced in
this paper to reduce partial differential equations that govern the
thermal and laminar flow equations for each prolate spheroid
and oblate spheroid to a set of ordinary differential equations. Fur-
thermore, these ordinary differential equations will be solved
numerically.

We show the governing laminar flow equations for prolate and
oblate spheroids from the previous related works of others, and the
derivation of the thermal boundary layer equation has been shown
in detail. Furthermore, the new transformations to reduce the gov-
erning partial differential equations of the laminar boundary layer
flow over prolate and oblate spheroids to a system of ordinary dif-
ferential equations are shown.

2.1. The formulation for prolate and oblate spheroids

In 2010, Samad and Garrett [37] introduced two different
orthogonal curvilinear coordinate systems, which are called pro-
late and oblate spheroidal coordinate systems. They converted
the full Navier–Stokes equations into these coordinate systems.
By applying the Prandtl boundary layer assumptions the govern-
ing laminar flow equations of the incompressible boundary layer
over rotating prolate and oblate spheroids were developed in an
otherwise still fluid in the steady state. We derive the governing
thermal boundary layer equations for both types of spheroids
by extending the technique used for rotating spheres (see Banks
[40]).

For prolate spheroids, a prolate spheroidal coordinate system
has been used and is defined relatively to the cartesian coordinate
system as

xH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2 � dH2

q
sin h cos/;

yH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2 � dH2

q
sin h sin/;

zH ¼ gH cos h:

Similarly, for oblate spheroids, an oblate spheroidal coordinate sys-
tem has been used and is related to the cartesian coordinate system
as

xH ¼ gH sin h cos/;

yH ¼ gH sin h sin/;

zH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2 � dH2

q
cos h:

In both coordinate systems, 0 6 h 6 p and 0 6 / 6 2p. Note that dH

is the focal distance of each of the cross-sectional ellipses over each
spheroid and gH is the length of the normal at the surface (at point
ðh;/Þ). Note that gH

0 is the length of the normal at a particular lati-
tude h and azimuth / of a particular body (prolate and oblate). For
further explanation, we refer the reader to the paper by Samad and
Garrett [37]. The prolate and oblate spheroids rotate in still fluid
with a constant angular velocity XH.

The eccentricity of the cross-sectional ellipse of each spheroid is

denoted by e and is defined as e ¼ dH
=gH. Samad and Garrett [37]

converted the full Navier–Stokes equations into both of the above
mentioned orthogonal coordinate systems and derived the dimen-
sional laminar flow equations for each body. Let UH;VH and WH be
the velocities in h-, /- and gH-directions, respectively. Note that
asterisks denote dimensional quantities. The dimensional laminar
flow equations for both types of spheroids can be seen in the work
of Samad [35]. However, we show the derivation of the dimen-
sional thermal boundary layer over both types of spheroids in
detail. The general energy equation for incompressible fluid with
constant thermal conductivity k can be written as

qCp V
!
�rTH ¼ kr2TH þU; ð2:1Þ

where TH is the local temperature and Cp is the specific heat. Fur-
thermore, U is the dissipation function and is ignored as we do
not consider heating due to viscous effects. We write Eq. (2.1) into
general orthogonal curvilinear coordinates (as Eq. (A.1) in Appendix A).
This equation is then transformed separately into prolate spheroidal
and oblate spheroidal coordinate systems. The full energy equations
are transformed into both types of coordinate systems (see Eqs.
(A.2) and (A.3) in Appendix A).

Similarly to the work of Samad and Garrett [37], we apply the
Prandtl boundary layer assumptions that UH � Oð1Þ, VH � Oð1Þ,
WH � OðdHÞ, @=@h � Oð1Þ, @=@g � dH

�1
. Also, we assume that

TH � Oð1Þ and dH � OðmH=XHÞ1=2. These boundary layer assump-
tions reduce the heat equation to dimensional equations that gov-
ern the thermal boundary layer over rotating prolate and oblate
spheroids. These governing dimensional thermal boundary layer
equations for both types of spheroids are shown as below. For pro-
late spheroids,

qCp
UHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gH2

0 � dH2

0 cos2 h
q @TH

@h
þ WH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2

0 � dH2

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2

0 � dH2

0 cos2 h
q @TH

@gH

0
B@

1
CA

¼ k
gH2

0 � dH2

0

gH2

0 � dH2

0 cos2 h

@2TH

@gH2 ð2:2Þ

and, for oblate spheroids,

qCp
UHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gH2

0 � dH2

0 sin2 h
q @TH

@h
þ WH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2

0 � dH2

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH2

0 � dH2

0 sin2 h
q @TH

@gH

0
B@

1
CA

¼ k
gH2

0 � dH2

0

gH2

0 � dH2

0 sin2 h

@2TH

@gH2 ð2:3Þ
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