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a b s t r a c t

In order to simulate a far field model used in geological radioactive waste repository, a new finite volume
scheme preserving positivity on arbitrary convex polygonal meshes with second order accuracy is pro-
posed in this paper. The model problem describes the coupled process of diffusion, convection and chem-
ical reaction, in which the diffusion tensors are highly anisotropic and heterogeneous. The classic implicit
and explicit schemes are used in the temporal discretization. The discretization of diffusive flux in Sheng
and Yuan (2016) is utilized, and the discretization of convective flux is based on a new corrected upwind
scheme that depends on some available informations of diffusive flux. The resulting scheme is positivity-
preserving and locally conservative, and has only cell-centered unknowns. Numerical results are pre-
sented to show that the performance of our positivity-preserving scheme for the numerical simulation
of radionuclide transport problem.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The exploitation and utilization of nuclear power produce high
level radioactive wastes. A key issue is how to deal with these
wastes safely and efficiently. One method is transmutation,
although the most nuclides would be separated and modified to
be less harmful, the technology is not mature. Hence, several
nuclear countries choose geological disposal to handle the radioac-
tive waste, i.e., geological radioactive waste repository system. The
nuclear waste are placed into containers, and the containers are
placed into a depth of several hundreds meters, which is well
below groundwater surface. Then, the groundwater maybe access
to the containers. Once a container leaks, groundwater can trans-
port radionuclides for a long distance. So it is essentially necessary
to provide an efficient estimate for safety assessment to the high-
level radioactive waste repository system.

In [13], it is pointed out that some particular features must be
considered for numerically simulating the radioactive waste repos-
itory. First, in consideration of the repository components of cylin-
drical shape, such as waste canisters and so on, an unstructured
mesh must be used. Second, geological formations and materials
are strongly heterogeneous. For example, the host rock consists
of a very low permeability material where the flow is very slow

and the transport is diffusion-dominated, then, in another layer
such as aquifers, the water flow is faster and the transport is
convection-dominated. Third, the dispersivity inside the aquifer
is highly anisotropic. Hence, how to construct an efficient and
accurate scheme for solving such kinds of model is very important.

In general, a scheme should be consistent, stable and maintain
some qualitative properties on the discrete level, such as local con-
servation and maximum principle. From the numerical point of
view, it is difficult to construct a scheme to satisfy the discrete
maximum principle on distorted meshes for convection-
diffusion-reaction equation, especially in the case that the magni-
tude of convection velocity is much larger than the diffusive coef-
ficient. So, a weaker version of maximum principle is considered,
i.e., positivity-preserving, which is one of the key points for dis-
crete schemes.

For the approximation of diffusive term, in order to preserve
positivity, some restrictive conditions on diffusive coefficients
and meshes are imposed [11,21,24], and some preprocessing or
postprocessing methods are proposed [1,8,32]. In recent years,
some nonlinear schemes without these restrictive conditions have
been proposed [10,18,19,25,27,29–31,35].

For the approximation of convective term, the gradient recon-
struction [4,5,12,15,20,22,33,34] is one of the most popular
method, where the convective flux can be approximated by the
upwind approach [2] and controlled by different slope limiting
techniques [5,6,9,17]. Bertolazzi [4] proposed a MUSCL-like
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cell-centered finite volume method, where the discretization of
advective fluxes is based on a least-square reconstruction of the
vertex values from cell averages. Lipnikov [20] proposed a new
slope limiting technique based on a specially minimal nonlinear
correction, which follows the ideas of the monotonic upstream-
centered scheme for conservation laws (MUSCL). Then, in [33,36],
the limiting technique is used to avoid nonphysical oscillation.

In this work, we introduce a new gradient reconstruction
method and construct a finite volume scheme preserving positivity
with second order accuracy for the steady convection-diffusion
equation on arbitrary convex polygonal meshes. The discretization
of diffusive flux in [31] is utilized. We focus on the discretization of
convective flux, since there exists already information in the dis-
cretization of diffusive flux, a new corrected method is proposed
to improve the accuracy. Our method can assure the positivity
and improve the accuracy. It is different with some existing
schemes such as [20,33,36]. Moreover, our method is very efficient
for some large deformed meshes, such as Kershaw mesh [14],
which is a challenging problem for the finite volume scheme. Then,
we extend it to the unsteady convection-diffusion-reaction equa-
tion, and prove that the scheme can preserve positivity. At last,
two applications of radioactive waste repository are tested to show
the effectiveness of our scheme, we use the nine point scheme [28]
and our positivity-preserving scheme with the classic explicit and
implicit discretization. Numerical results show that our fully impli-
cit positivity-preserving scheme is more efficient.

The article is organized as follows. The model problem is
described and some notations are introduced in Section 2. The
main idea of construction for 1D steady convection-diffusion equa-
tion is given in Section 3. The discretization of diffusive and con-
vection flux is given in Section 4. In Section 5, we show that our
scheme can preserve the positivity, and give the in detail. In Sec-
tion 6, two numerical tests are exhibited to illustrate the features
of our scheme. At last, some conclusions are given in Section 7.

2. The model problem

2.1. Radionuclide transport problem

We consider the radionuclide transport equations [13,23], and
more specifically the transport of the 129I. It escapes from a waste
repository vault into the water and its concentration is given by the
following unsteady convection-diffusion-reaction equation:

x
@C
@t

�r � ðDrC � ~UCÞ þxkC ¼ 0 in X� ð0; TÞ; ð1Þ

where C is the solute concentration, k ¼ log2=Te with Te being the
half life of the element, x is the effective porosity,

D ¼ De þ �aðaT ;aL; ~UÞ is the diffusion tensor where De is the effective
diffusion tensor and �a is the dispersive tensor, where aT ; aL is trans-
verse and longitudinal dispersivity, respectively.

In the Eq. (1), Darcy’s velocity ~U is given by Darcy’s law:

r~U ¼ 0;
~U ¼ �KrH;

(
ð2Þ

where K is the permeability tensor, and H is the head.

2.2. Mathematical model

Now, we consider the following unsteady convection-diffusion-
reaction equation for unknown function u:

b
@u
@t

�r � ðjru� vuÞ þ cu ¼ f ; in X� ð0; TÞ; ð3Þ

u ¼ g; on @X� ð0; TÞ; ð4Þ

u ¼ u0; in X� f0g; ð5Þ

where X is a bounded polygonal domain in R2 with boundary
@X; v ¼ vðx; tÞ is a velocity vector field and j ¼ jðx; tÞ is a diffusion
tensor, b > 0 is constant. Assume that the functions
c ¼ cðx; tÞ; f ¼ f ðx; tÞ; g ¼ gðx; tÞ and v satisfy the following
constraints:

r � v P 0; v 2 C1ð�XÞ2; ð6Þ
c 2 L1ðX� ð0; TÞÞ; c P 0; ð7Þ
f 2 L1ðð0; TÞ; L2ðXÞÞ; ð8Þ
g 2 L1ðð0; TÞ;H1=2ð@XÞ \ Cð@XÞÞ; ð9Þ

and there are two positive constants k1 and k2 such that

k1jnj2 6 jn � n 6 k2jnj2;8n 2 R2:

The assumptionr � v P 0 is not a necessary condition in Eq. (6),

so it can be neglected. We only need v 2 C1ð�XÞ2. Meanwhile, c P 0
is also not a necessary condition in assumption (7), too, it can be
weakened to c P �c0 (c0 is a positive constant). The reason that
the condition is strengthened into the present form is to give a sim-
ple proof for the positivity-preserving. When the conditions (6)
and (7) are weakened, in order to guarantee the positivity of the
scheme, a restriction on the time step (Dt) must be introduced,
i.e., ðc0 þ kr � vk1ÞDt < 1.

3. The 1D problem

We first describe the basic idea of finite volume scheme pre-
serving positivity for 1D steady convection-diffusion equation
briefly, that is

� j
@2u
@x2

þ b
@u
@x

¼ f ; in X; ð10Þ

u ¼ g; on @X; ð11Þ

where X is a bounded domain ½l1; l2� with boundary @X; b ¼ bðxÞ is a
velocity, j ¼ jðxÞ is a diffusive coefficient and f ðxÞ is the source.

Divide the interval ½l1; l2� with Ii :¼ ½xi�1=2; xiþ1=2�; i ¼ 1;2; . . . ;N,
where x1=2 ¼ l1; xNþ1=2 ¼ l2. See Fig. 1. We define
h ¼ ðl2 � l1Þ=ðN � 1Þ and integrate (10) at each interval Ii to obtainZ xiþ1=2

xi�1=2

�j @2u
@x2

þ b
@u
@x

 !
dx ¼

Z xiþ1=2

xi�1=2

f ðxÞdx: ð12Þ

With Green’s formula, we obtain

F i;i�1=2 þ F i;iþ1=2 þ Gi;i�1=2 þ Gi;i�1=2 ¼
Z xiþ1=2

xi�1=2

f ðxÞdx; ð13Þ

where F P;Q ;GP;Q are the continuous diffusive and convective flux at
the point Q of cell P, respectively. Actually, the expression of diffu-
sive flux can be written as the following form, that is

F i;i�1=2 þ F i;iþ1=2 ¼ �ji
ui�1 � 2ui þ uiþ1

h
þ Oðh2Þ: ð14Þ

It satisfies the discrete maximum principle clearly.
We focus on the discretization of convective flux, where

Gi;i�1=2 ¼ �bðxi�1=2Þuðxi�1=2Þ ¼ ��ui�1=2ðbþ
i�1=2 � b�

i�1=2Þ þ Oðh2Þ;
ð15Þ

Gi;iþ1=2 ¼ bðxiþ1=2Þuðxiþ1=2Þ ¼ �uiþ1=2ðbþ
iþ1=2 � b�

iþ1=2Þ þ Oðh2Þ: ð16Þ

and

bþ
j ¼ jbjj þ bj

2
; b�

j ¼ jbjj � bj

2
; ðj ¼ i� 1=2; iþ 1=2Þ:
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