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a b s t r a c t

To study the heat transfer in a natural convection under dense particulate condition with finite-size
spherical particles of uniform diameter, a direct numerical simulation is conducted. For calculating the
momentum-interaction between the particle and fluid, our original immersed solid method is applied.
The heat transfer in the particle-dispersed flow is treated in Eulerian way with the interfacial flux decom-
position method. The results shows that, with fixing the thermal conductivity ratio (of the solid to the
fluid) to be 100, the temporal- and horizontal-average Nusselt number hNuit increases monotonically
with solid volume fraction (vf) at Rayleigh number Ra = 104, while hNuit at Ra = 105 exhibits a local max-
imum at around vf = 40%, although hNuit at Ra = 105 is always larger than that at Ra = 104. The heat flux in
the particulate system is decomposed into the contributions by convection and conduction through the
particles, fluid and interface, and the result shows that the conduction through the interface is the dom-
inant factor to the vertical heat flux in the media. Through visualization of the heat flux through the par-
ticle surface, the importance of directly resolving the local heat conduction within the individual particle
and through the interface is highlighted.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Dense particulate flow is observed in industrial applications
including energy conversions and chemical processes, and the par-
ticles often play an important role in the fluid flow and heat trans-
fer in the particulate media. The heat transfer in particle-dispersed
media containing a small amount of nanoparticles of substantially
higher effective thermal conductivity than the base fluid has been
investigated [1,2], and the large effect on the fluid flow and the
improvements in the heat transfer performance were reported.
Generally, solid particles of high thermal conductivity could
improve the effective thermal conductivity of the particulate
media by hundreds or even thousands times greater than that of
a base fluid such as water and ethylene glycol (while suppressing
the gross viscosity of the mixture), which is a significant way to
exploit highly-conductive particles.

Through extensive studies over the decades, a number of
numerical techniques have been developed to simulate the motion
of a large number of solid particles in a fluid [3–5]. In a combined
Eulerian-Lagrangian formulation for the particulate flows, the
Lagrangian frame is employed for solving the motion of the solid

particles and the particle temperature, while the fluid phase is rep-
resented in the Eulerian frame, [4,6,7]. This choice of the frames
has enabled simulation of a variety of fluid-particle interaction
problems and the heat transfer in a solid-dispersed multiphase
flow [8–10]. However, for the problems of heat transfer in particu-
late media, many researchers assigned a unique temperature for
each particle instead of considering temperature distribution
inside the individual particle.

Takeuchi et al. [11] discussed the effects of temperature gradi-
ent within the individual particles of non-negligible size and inter-
particle heat flux due to collision on the flow structure and heat
transfer in a particle-dispersed natural convection. They studied
the contributions of the convective and conductive components
of the heat flux to the overall heat transfer for different bulk solid
volume fractions and thermal conductivities of the particles. They
showed that, with highly-conductive particles, the conductive
component of the heat flux enhances the overall amount of heat
transfer in the particulate flow as the bulk solid volume fraction
is increased. On the other hand, the balance between the convec-
tive and conductive components remains approximately the same
irrespective of bulk solid volume fractions for neutrally-conductive
particles. While the importance of the heat transfer paths (either
through the fluid or particle) near the hot wall has been pointed
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out [12,13], the contribution of interfacial heat transfer in the near-
wall region has not been investigated.

In this paper, we focus on the diversity of the heat transfer in a
dense particulate media by changing the Rayleigh number and
solid volume fraction while fixing the thermal conductivity ratio
of solid to fluid, because the above parameters are the primary fac-
tors to the heat transfer in a natural convection under dense partic-
ulate condition with finite-size spherical particles of uniform
diameter. To highlight the effect of the interface, dense particle-
dispersed flow, especially the solid volume fraction higher than
50%, is studied, and the heat flux in the particle-dispersed natural
convection is further decomposed into the conductive components
through the fluid, particle and fluid-particle interface for different
Rayleigh numbers.

For simulating the fluid flow around the individual particles and
the heat transfer in the dense particulate flow, direct numerical
simulation is conducted. For calculating the momentum exchange
between the particles and fluid, our original immersed solid
method [12,14] is employed, as the method is suitable for simulat-
ing collective behavior of thousands of particles [15]. The temper-
ature distribution (in both the fluid and particle phases) is solved
by considering the anisotropy of the local thermal conductivity
in the interfacial cells [12,13].

The contents of the paper are as follows. Section 2 introduces
the governing equations, and Section 3 explains the numerical
methods including our original immersed solid method for solving
the fluid-particle momentum-interaction, the interfacial flux
decomposition method and contact resistance model. Heat transfer
in the particulate media between two parallel plates is studied in
Section 4. In this section, some snapshots of the temperature and
velocity distributions in the particle-dispersed flows are presented
(Section 4.2), and the spatial variation of the heat flux along the
vertical direction is discussed for different the bulk solid volume
fraction (Section 4.3). Then, the heat transfer is decomposed into
the conductive and convective components through the fluid and
particles (Section 4.4). Finally, the effect of the interfacial heat flux
between the fluid and particles on the heat transfer is discussed
(Section 4.5).

2. Governing equations

For the fluid phase, an incompressible iso-viscous Newtonian
fluid is assumed. The governing equations for the fluid are the
equations of continuity, momentum and energy given by the fol-
lowing equations:

r � uf ¼ 0; ð1Þ

@uf

@t
þ ðuf � rÞuf ¼ � 1

qf
rpþ mr2uf � bðT � T0Þg; ð2Þ

@T
@t

þ uf � rT ¼ kf
qf cf

r2T; ð3Þ

where uf is the fluid velocity, the subscript ‘‘f” denotes the fluid
phase, t is the time, qf is the fluid density, p is the pressure, m is
the kinematic viscosity of the fluid, b is the thermal expansion coef-
ficient, T is the temperature, g is the gravitational acceleration, kf is
the thermal conductivity of the fluid, and cf is the specific heat of
the fluid. The dimensionless forms of the above equations are
respectively given as follows:

r � u� ¼ 0; ð4Þ
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ffiffiffiffiffiffi
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Ra
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where j = g/|g| is the unit vector in the direction of the gravity. The
dimensionless variables are represented with the superscript ‘⁄’ and
those are listed in Table 1. Here, the reference velocity is
U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbDTH
p

with the characteristic temperature difference DT.
The reference length H is explained in Section 4.1. The following
two non-dimensional numbers are introduced: Prandtl number

Pr ¼ mqf cf =kf and Rayleigh number Ra ¼ Pr � ðUH=mÞ2. Hereafter,
the notation ‘⁄’ is omitted as there is no possibility of
misunderstandings.

3. Numerical method

3.1. Immersed solid method

Based on our original immersed solid method [15], the proce-
dure of the interaction between the fluid and particle is briefly
explained in the following. In the method, one particle diameter
is typically resolved more than 10 grid points. Hereafter, the cell
partially occupied by the solid object is referred to as interfacial
cell. The velocity in the interfacial cells is established by volume-
averaging the fluid velocity and the particle velocity:

u ¼ ð1� aÞuf þ aus; ð7Þ
where a is the local solid volume fraction and the subscript ‘‘s”
denotes the solid phase. The velocity field of the interface is
assumed to obey Eq. (5) and the intermediate velocity field uF2 is
obtained as follows:

uF1 ¼ un þ
Z tnþ1

tn
�rp� ðu � rÞuþ

ffiffiffiffiffiffi
Pr
Ra

r
r2u� bðT � T0Þj

" #
dt;

ð8Þ

r2/ ¼ r � uF1

Dt
; ð9Þ

uF2 ¼ uF1 þr/Dt; ð10Þ
where Dt = tn+1 � tn is the time increment and / = pn+1 � pn. In this
paper, the convective and viscous terms are integrated in time with
the second-order Adams-Bashforth and Crank-Nicolson methods,
respectively. The momentum-interaction force between the phases
is modeled as follows [12,15]:

f nI ¼ anðun
s � uF2

f Þ
Dt

; ð11Þ

and the force is imposed at the interfacial cell to satisfy the no-slip
condition at the object surface, and the velocity field is time-
updated to the next time level (n + 1) as:

unþ1 ¼ uF2 þ f nI � Dt: ð12Þ
The motion of the solid particle is calculated in the Lagrangian

frame. The translating and angular velocities of the particle are
updated as follows:

unþ1
s ¼ un

s þm�1
s

Z tnþ1

tn
dt

Z
Vs

�qf f I
� �

dVs; ð13Þ

xnþ1
s ¼ xn

s þ I�1
s �

Z tnþ1

tn
dt

Z
Vs

Rs � ð�qf f IÞdVs; ð14Þ

where ms is the particle mass, Vs is the volume enclosing the parti-
cle, xs is the angular velocity vector, Is is the inertia tensor of the
particle and Rs is the radial vector from the particle center to the
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